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The online software server SARAh–webRepresentational Analysis is intro-

duced. It replaces the previous Windows-versions of SARAh–Representational

analysis and SARAh–Refine, and related theory. The new suite of web apps

carries out a range representational analysis calculations, including those based

on the works of Kovalev, Bertaut, Izyumov, Bradley, Cracknell, Birman and

Landau, for magnetic structures and electronic properties within frameworks

based on the crystallographic space groups and point groups. Irreducible

representations are sourced from the works of Kovalev, tabulated and compu-

tations are carried out on a server using Mathematica.

1. Introduction

While the use of representation theory was well established

for the calculation of physical properties of atomic systems

(Eckart, 1930) and crystals (Bouckaert et al., 1936), such as the

splitting and degeneracies of energy levels in materials with

normal groups and black and white groups, it was the work of

Kovalev (1963, 1964) and Bertaut (1968, 1971) that pioneered

the use of basis vectors calculated by representation theory for

the description of magnetic structures. Despite the subsequent

successes of representation theory in describing and analysing

magnetic structures, a gap existed between software that could

perform representational analysis calculations, most notably

MODY for DOS (Sikora, 1994), and magnetic neutron

diffraction refinement codes which largely followed a crys-

tallographic approach to magnetic structures, such as in GSAS

(Larson & Von Dreele, 1986) where the relationships between

the magnetic moments had to be defined in symmetry

operations as either black or white, to encode the colour

permutation of the (Shubnikov) magnetic space groups

(MSGs). While FullProf (Rodrı́guez-Carvajal, 1993) had

incorporated various descriptions for commensurate and

incommensurate structures, such as using rotation matrices,

integration of representational theory directly into its refine-

ments was to come later (Rodriguez-Carvajal, 2005). The

typical situation resembled that of the 1970s (Izyumov &

Ozerov, 1970) where refinement of a magnetic structure

required a time consuming trial and error process of entering

the symmetry constraints for each magnetic moment and

testing against experimental data.

The original release of SARAh—Representational Analysis

and SARAh—Refine (Wills, 2000) performed the calculations

of Representational Analysis using irreducible representa-

tions calculated with a Visual Basic 6 translation of KAREP

(Hovestreydt et al., 1992) and then projected basis vectors

following the methods of Bertaut and Izyumov. The results

were integrated with the Rietveld analysis program GSAS

using SARAh—Refine. Rather than refining magnetic
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moments directly, SARAh1 introduced a new protocol where

the mixing coefficients of the basis vectors were used as

refinement variables and applied global minimization algo-

rithms based on Monte Carlo and Simulated Annealing

methods1. This change away from conventional least-squares

minimization combined with the typical reduction in the

number of refined variables that came from representation

theory, to allow the creation of maps of �2 against refinement

parameters as a window to explore the refinement’s modelling

(Wills, 2001). The functionality in SARAh then increased by

incorporation of the computer files of loaded representations

from Kovalev’s tables as a source of irreducible representa-

tions (the 2K version); integration with the subsequent

inclusion of basis vectors into FullProf (Rodriguez-Carvajal,

2005), and later Topas (Coelho, 2018). Routines were also

developed to determine the values of k vectors by Monte

Carlo refinement of equal magnitude magnetic moments,

without further symmetry constraint, for the various char-

acteristic k vectors of the Brillouin zone, a method named

‘Brillouin zone indexing’ (Wills, 2009). SARAh’s development

moved in 2018 to a web system and a new software framework

based on Mathematica (Wolfram Research, 2024).

Underlying the development and application of SARAh

was the goal of linking the results of representation theory

with refinements, and commonly used codes such as GSAS and

FullProf. The web version of SARAh seeks not only to

reproduce the original functionality; it seeks to extend it by

collating a range of symmetry tools within a series of coherent

workflows. An area that will be covered in a later report is the

recent development of the SERENDIPITY protocol (Geor-

gopoulou et al., 2023), which can determine stability condi-

tions for an observed magnetic structure.

2. Software

The calculations in SARAh are carried out on a local server

using Mathematica. The web interface takes in user data,

performs the relevant calculation and then returns the output

for display. This is preferred over the application of a database

for flexibility and future development, but user requests do

take longer because of the computational overheads. There

are no separate programmes as part of SARAh. Instead, web

apps are formed that direct and integrate the flow of various

routines towards tailored goals and these flows will be a

particular feature of the development. SARAh—webRepre-

sentational analysis is freely available at: http://fermat.chem.

ucl.ac.uk/spaces/willsgroup/

3. Application of Kovalev’s tables

This section introduces the main tables that are available in

the English versions of Kovalev’s published tables (Kovalev,

1965; Kovalev, 1993) and via SARAh, though it should be

noted that Kovalev’s initial collection of Irreducible Repre-

sentations of the Space Groups was published earlier in

Russian (Kovalev, 1961). The current calculations are focused

on the commonly found situation where there is a single k

vector and full-group method has not yet been integrated. The

tables do contain more information than presented here and

in future developments more data will be presented.

3.1. Irreducible representations of the little group G(k)

For each Bravais lattice, Kovalev’s tables list a set of char-

acteristic vectors2, k, within the first Brillouin zone (BZ).

Taking G to be a crystallographic space group with symmetry

operations g = {h j t}, where g involves a (proper or improper)

rotation h and a subsequent translation t, the set of all the

rotation operations h form the point group Ĝ. Application of

Ĝ to k transforms the vector into a number of vectors in

reciprocal space with equal modulus. The set of operations

h 2 Ĝ with matrices Rh that leave k invariant within a reci-

procal lattice translation K:

k0 ¼ k:Rh þ K; ð1Þ

form a subgroup ĜðkÞ of the point group Ĝ that is termed the

point group of k, the little-point group of k or the little co-

group ĜðkÞ of k (Aroyo & Wondratschek, 1995). As this point

group is defined up to an equivalence in k, it may contain more

operations than the isotropy group of k (Tolédano & Tolé-

dano, 1987), which consists of those operations that leave k

unchanged and the two constructions should be differentiated.

The set of k vectors, distinct up to the equivalence equation,

generated by application of Ĝ to k forms the star of the

propagation vector:

kf g ¼ k1; k2; . . . kn: ð2Þ

The subgroup of G consisting of elements, h 2 ĜðkÞ, whose

rotation parts leave k unchanged or invariant up to this

equivalence, forms the little group of the vector k, denoted as

G(k). This subgroup is fundamental to the application of

group theory to problems in condensed matter physics,

including the description and analysis of magnetic structures.

As the irreducible representations of G(k) depend on the

numerical value of k, some attempts at tabulations made in the

literature are quite voluminous, for example the tables of

Miller & Love (1967). In a remarkable tour de force to reduce

such tables to a core, Kovalev (1961) instead took advantage

of a construction developed by Lyubarskii (1960) and

presented the matrix representatives of the so-called weighted

or loaded representations, �̂pðhÞ of ĜðkÞ that are used to

construct the small irreducible representations �kp(g) of G(k)

according to the equation:

�kpðgÞ ¼ expð� 2�iktÞ�̂pðhÞ ð3Þ

Here the index p labels the irreducible representations. In

applying equation (3), the loaded irreducible representations

have the necessary mapping with the rotations of ĜðkÞ but for

non-symmorphic groups are not the irreducible representa-

tions of the point group themselves. Where the space group

research papers

Acta Cryst. (2025). B81, 28–36 Andrew S. Wills � SARAh – web representational analysis 29

1 SARAh takes its name from the combination of Symmetry Annealing and
Representational Analysis 2 The general k vector is added to Kovalev’s selection as k0.
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operations used in Kovalev’s tables do not match the cell

choice and settings currently used in International Tables

Volume A (International Tables for Crystallography, 2005),

transformations of the symmetry operations and k vector are

performed by SARAh to enable their use. Tables of the irre-

ducible representations of these groups G(k) are presented

following a labelling scheme exemplified by ‘k3t2’,where ‘k3’

is Kovalev’s index for the k vector type and ‘t2’ is the IR label.

When working with magnetism and the simple groups, this

label should be extended to ‘mk3t2’, where the prefix m

indicates that magnetic structures break time-reversal

symmetry. In his tables, Kovalev refers to groups whose

elements correspond to geometric rotations or operations as

’simple groups’3 to differentiate them from double groups

where they are matrix rotations.

When working with the irreducible representations of the

space groups, it should be noted that the tables from other

sources, most commonly those based on Miller & Love (1967),

such as available through the Bilbao Crystallography Server

(Aroyo et al., 2006) and Isotropy (Stokes et al., 2007), may not

feature identical irreducible representations as the space-

group settings, symmetry operations and canonical k vectors

may differ.

3.2. Irreducible corepresentations of the little group G(k, hk)

Antiunitary symmetry was integrated with representation

theory by Wigner (1959) to introduce invariance with respect

to the time-reversal t ! � t, or, as he thought more appro-

priate, ‘reversal of the direction of motion’. The application of

the time-reversal operation, �, brings together stationary

states � and �� that have the same energy in quantum

mechanics. Its applicability to classical physical systems or to

spinless quantum theory comes via the operation of complex

conjugation, i.e. � = K.

Using D to signify a corepresentation, Wigner’s work leads

to an algebra that follows from the properties of the unitary

(g) and antiunitary (a) operations:

DðgjÞDðgkÞ ¼ DðgigkÞ; DðgÞDðaÞ ¼ DðgaÞ;

DðaÞDðgÞ
�
¼ DðagÞ; DðajÞDðakÞ

�
¼ DðajakÞ

The importance of complex conjugate in the above equations

led Wigner to name these extensions ‘corepresentations’.

Within the application of representational theory to magnetic

structures, these corepresentations are used with the direct

product of the crystal space group G or point group with the

group {E, �}. A similar direct product of the crystal space

group with {E, R} is used to form the grey magnetic space

groups, though there time-reversal is the linear operation of

moment reversal R = 10. This shared construction shows that

the M(k) = {E, �} � G is a form of space–time symmetry group

(Birman, 1984), though one that is over an antiunitary group.

Kovalev termed such antiunitary groups ‘neutral groups’,

following the language of colour symmetry (Senechal, 1983)

and to distinguish them from MSGs. Unitary operations

appear in corepresentations as a unitary subgroup, which has

allowed a shortcut whereby some common properties may be

determined without calculation of the corepresentations

themselves, explaining the utility and importance of the irre-

ducible representations of G(k).

In Kovalev (1993), a process was laid out for the

construction of the irreducible corepresentations of G(k, �k)

from irreducible representations of the unitary subgroup G(k)

according to two variations.

Variation I. When � k is not a member of {k} the corepre-

sentations are of type c and are over the neutral group M(k) =

G + �G. Taking the unitary and antiunitary operations as g and

a = �g, respectively, the matrix representatives of the core-

presentation are constructed from irreducible representation,

�, and have the form:

DðgÞ ¼
�ðgÞ 0

0 �ðgÞ
�

� �

;

DðaÞ ¼
0 ��ðgÞ

�ðgÞ
�

0

� �

where for simple groups � = 1 and for double groups � = � 1

(Section 3.3).

Variation II. When � k is a member of {k}, the corepre-

sentation is over the group M(k) = G(k, a0) = G(k) + a0G(k).

Here, a0 is an antiunitary generating element that plays two

roles in the form of the irreducible corepresentations. It acts in

Variation II to extend the group to include the antiunitary

operations and is involved in relating the matrix representa-

tive of the antiunitary operation to that of a member of the

unitary irreducible representation. This is particularly impor-

tant in magnetic structures where time-reversal links orbits of

atomic positions that are equivalent under G but are sepa-

rated in G(k). Through the given equations, its choice also

defines the value of the auxiliary matrix � where relevant. The

matrices for the unitary and antiunitary operations are given

for three possible situations:

Type a. These contain only one irreducible representation,

�.

DðgÞ ¼ �ðgÞ; DðaÞ ¼ �ðaa� 1
0 Þ�;

where � satisfies ��� ¼ �ða2
0Þ and � ��ðgÞ ¼ �ðgÞ�.

Type b. This involves the same irreducible representation of

the unitary subgroup, �, twice:

DðgÞ ¼
�ðgÞ 0

0 �ðgÞ

� �

; DðaÞ ¼
0 �ðaa� 1

0 Þ�

� �ðaa� 1
0 Þ� 0

� �

with ��� ¼ � �ða2
0Þ and � ��ðgÞ ¼ �ðgÞ�.

Type c. Here two irreducible representations, � and ��, that

are not equivalent combine to form an irreducible corepre-

sentation.

DðgÞ ¼
�ðgÞ 0

0 ��ðgÞ

� �

; DðaÞ ¼
0 �ðaa0Þ

�ða� 1
0 aÞ

�
0

� �

;

In these, � is an auxiliary matrix which satisfies
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3 This term is also used for groups with no self-conjugate subgroups (Dres-
selhaus et al., 2008).
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��� ¼ �ða2
0Þ; �

��ðgÞ ¼ �ðgÞ�

Wigner’s labelling of the types of corepresentations corre-

sponds to Kovalev’s classifications according to type 1

(variation II, type a), type 2 (variation II, type b), and type 3

(variation I and variation II, type c). We believe that historical

developments have resulted in a sometimes confusing litera-

ture on corepresentations. Interested readers are encouraged

to consult (Frei, 1966) and (Birman, 1984).

When applied to the representation analysis of magnetic

structures, consequences of the extension from irreducible

representations to corepresentations are most commonly seen

as being responsible for joining coincidences between eigen-

values. This occurs, for example, when type c (variation II)

irreducible representations come together to form a corepre-

sentation that links under time-reversal the orbits of a crys-

tallographic site that are disjoint under G(k) (Radaelli &

Chapon, 2007).

Tables of irreducible corepresentations formed from the

irreducible representations of G(k) are presented along with

details of the a0 and � matrices, where used. To encourage

consideration of the consequences of the phase relationships

between unitary and antiunitary components, the antiunitary

parts are presented with 0 and � phase shifts. � is used in

labelling of the antiunitary operation and the user should

adjust this to K when relevant. Corepresentations are

presented following a labelling scheme exemplified by ‘ak3t2’,

‘ak3t2+t4’. Here ‘ak3’ is Kovalev’s index for the k-vector type

for the antiunitary group. There follows labels for the simple

group irreducible representations used in the corepresenta-

tion construction and these have the form ‘t2+t4’ for variation

II, type c and ‘t2x2’ for variation II type b. This scheme will be

extended to complete groups by using capitalized IR labels,

and to double groups by inclusion of ‘†’.

3.3. Irreducible representations of the double-groups of

G(k)†

The application of group theory to crystallography typically

pertains to classical systems or quantum states with integer

angular momentum quantum numbers. For species with half-

integer angular momentum quantum numbers, such as elec-

trons, rotation by 4� rather then 2� is required to reverse the

direction of momentum (Bethe, 1929). This necessitates an

extension from conventional geometry (simple groups) to

either double-valued representations of single groups or a

doubling of the group with single-valued representations

(Opechowski, 1940). Information on the latter, and a process

for forming double groups and their irreducible representa-

tions are presented in Kovalev (1993). This begins from taking

the Euler angles for each proper rotation, h and deriving a set

of ‘matrix rotations’ (u matrices). Such a structure creates a

fixed correspondence to the h rotations which allows the u

matrices, u(h), to be labelled according to the rotational

symbol h, and their negative � u(h) as h*. In this way, a simple

group H with rotations h1, h2, h3, . . . , hn forms the double

group Hu with the matrix rotations h1, h�1 , h2, h�2 , h3, h�3 , . . . , hn,

h�n. Irreducible representations of the double groups have the

notable property of being either even, �(h) = �(h*), or odd,

�(h) = � �(h*).

The multiplication table for the matrix rotations of the

crystallographic setting and the irreducible representations

formed from G(k) are presented. These irreducible repre-

sentations fall into two categories – those of the simple group

extended to the double group with �, and those constructed

from the loaded irreducible representations �̂ðhÞ of the double

group Hu(k), according to

�kpðgÞ ¼ expð� 2�iktÞ�̂pðhÞ; ð4Þ

are labelled with �.

Only � and � irreducible representations that are even and

odd, respectively, have application to physical systems

(Kovalev, 1993; Dresselhaus et al., 2008) and are presented

following a labelling scheme exemplified by †k3t2 and †k3p1;

here † indicates a double group, k3 is Kovalev’s index for the k

vector type, and t2 and p1 are IR labels for �- and �-type

irreducible representations, respectively.

4. Calculation frameworks

In addition to providing a web-based source of Kovalev’s

tables, expanded and tailored to the user’s problem, SARAh

performs calculations based on representation theory. While

this technique is most commonly associated with the cele-

brated paper by Bertaut (1968); Kovalev (1963) extended

Dzyaloshinsky’s (1958) work to present a clear and detailed

methodology based on Landau theory, the application of local

symmetry requirements, and the calculation of the thermo-

dynamic potential (Section 4.3.3) in terms of invariant

combinations of basis functions associated with the irreducible

representations of the space group, G(k) (Section 3.1):

� ¼ �0 þ I0ðT � �Þf
2ðci;�Þ þ

X

�

A�f 4
� ðci;�Þ þ

X

�

A�f 6
� ðci;�Þ;

ð5Þ

where f2, f 4
� and f 6

� are invariants constructed from coefficients

ci of the basis vectors with components � = (x, y, z) that

transform according to a compete irreducible representation

of the group G (Section 4.2), � is the transition temperature,

and I0 > 0 at the transition temperature. These calculations

enabled the determination of phase diagrams of possible

magnetic structures when the translation properties of the

magnetic structure were the same as, or different to, those of

the crystallographic structure. This was an important contri-

bution that effectively combined Landau theory (Landau &

Lifshitz, 1980), magnetic symmetry and representation theory.

A notable difference between the methods of Kovalev and

Bertaut was the former’s focus on transformation of real

magnetic moments under the magnetic symmetry while the

latter made explicit use of a permutation representation and

Fourier components that could involve complex basis vectors.
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4.1. The little group method – irreducible representations of

G(k)

Currently, projection of the basis vectors for possible

magnetic structures in SARAh follows the method of Bertaut

and begins from the magnetic representation, � mag, which

describes how the magnetic moments at the atomic positions

change under G(k). This representation can be decomposed

into irreducible representations of G(k) according to

� ¼
X

�

n�� �; ð6Þ

where for a group of order n(G(k)),

n� ¼
1

nðGðkÞÞ

X

g2GðkÞ

�� mag ðgÞ�� �
ðgÞ
�
: ð7Þ

The basis vectors associated with an irreducible representa-

tion are calculated using a projection operator

wi�
� ¼

X

g2GðkÞ

d��� ðgÞ�i;gi exp½� 2�ikðrgi � riÞ� detðRhÞRh����� ð8Þ

that when applied to a set of trial functions �����, commonly

����1 ¼ ð100Þ; ����2 ¼ ð010Þ; ����3 ¼ ð001Þ; ð9Þ

will project out a basis of the irreducible representation. Here,

Rh is the rotational matrix of symmetry operation g = {h|s},

and � is the element of the representation matrix. In SARAh

the final basis vectors come directly from equation (8) and are

not adjusted by normalization or an orthogonalization

process, such as the Gram–Schmidt algorithm.

There are three features of representational analysis of

magnetic structures that are worthy of emphasis. Firstly,

projection from an irreducible representation of dimension d

can result in up to 3d independent basis functions. When d > 1,

use of high-symmetry combinations of these basis vectors can

simplify the related analysis of possible magnetic structures

(Section 4.2). Secondly, the basis vectors are Fourier compo-

nents characterized by the propagation vector k and following

equation (8) can be complex. Thirdly, the real moments of the

magnetic structure can be constructed from a simple sum of

the basis vectors associated with the required propagation

vectors and representations, with the contribution from each

basis vector wi weighted by a mixing coefficient, C�, according

to

mj ¼
X

�;k

Ck
�w

k
i;�: ð10Þ

This simple summation contains some of the key flexibilities

in the application of representation theory to magnetic

structures. What is included in the summation is also the

source of many the arguments and misunderstandings. A

common fallacy that should be corrected is the belief that

Bertaut’s work restricted the basis vectors to a single irre-

ducible representation — this view is incorrect as he carefully

signalled more sophisticated scenarios, noting ‘If the spin

components S� and S� belong to different irreducible repre-

sentations � � and � �, the spin Hamiltonian must have terms of

order four at least’ (Bertaut, 1968), in line with the arguments

from Landau theory that follow in Section 4.3.3.

Where the refinement code is able to use complex basis

vectors directly, as is the case in FullProf, there is no need to

make the magnetic moment components real during the

refinement. Instead, the basis vectors that correspond to � k

and the complex-conjugate representation may be added to

equation (8) after the refinement to form the final magnetic

structure of real moments. This can be done in FullProf.

4.2. Subgroups, stationary vectors, isotropy groups and order

parameters

When the irreducible representation has dimension > 1,

high-symmetry basis vector spaces and related magnetic

structures can be constructed by applying restrictions to the

values of the mixing coefficients. These are commonly referred

to as isotropy groups or stationary vector groups, and are an

example of where commonality between the mathematics of

representation theory and magnetic space groups allows their

frameworks to be used together.

The application of these isotropy groups grew from the

problem of determining the possible subgroups of a parent

group. Inspection of an irreducible representation of dimen-

sion 1 gives all the symmetry operations that have a character

of unity and can thus be combined to form a subgroup. Irre-

ducible representation of dimension > 1 can also be used to

find subgroups by looking at operations that leave a vector in

irreducible representation space, g invariant:

dðgÞg ¼ g: ð11Þ

Here, d(g) is the matrix representative of g. By suitable choice

of g, all subgroups associated with an irreducible representa-

tion can be determined. The lowest symmetry subgroup is

termed the kernel, and the higher symmetry groups are called

epikernels (Ascher, 1977; Jarić, 1983). To find the magnetic

space groups associated with an irreducible representation,

one can identify the operations that reverse g with the anti-

symmetric operations of the magnetic space group (Stokes &

Hatch, 1988). As magnetic space groups involve real atomic

moments, the mapping is direct when an irreducible repre-

sentation is real, but when the irreducible representation is

complex and not equivalent to a real irreducible representa-

tion, the physically irreducible representation can be applied.

These are formed using a block matrix structure of the direct

sum d(g) � d(g)*. A further connection with representation

theory is that the vector g is made from the coefficients in

equation (10). A form of g that corresponds to a high-

symmetry structure within the irreducible representation basis

vector space, restricts the coefficients in the basis vector

summation and so corresponds to particular moment direc-

tions in the magnetic structure.

Ascher (1966) conjectured that for a continuous phase

transition between two phases with symmetries H and L < H,

the symmetry of L is always a maximal subgroup of H. This

provided a link between active representations and the

possible group L, and can be thought of as a requirement that
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there are a minimum in the thermodynamic potential asso-

ciated with a maximal isotropy group but not the kernel.

Subsequently, Mukamel & Jaric (1983) provided the first

counter examples to this conjecture involving quartic terms,

with more examples found later (Michel, 1984). Despite these

failings, maximal subgroups do continue to provide an excel-

lent starting points for considering possible magnetic struc-

tures (Aroyo et al., 2006), in particular for quartic

Hamiltonians.

In this section, stationary vectors in irreducible repre-

sentation space were introduced as an abstract tool that can be

used to determine subgroups and the respective values of

high-symmetry mixing coefficients. They also have physical

significance — in the Landau theory of phase transitions, they

can define an order parameters of the expansion. Through this

step, the mixing coefficients that construct a magnetic struc-

ture in equation (10) can be related to polynomial invariants,

stability conditions and coupling between irreducible repre-

sentations. This then allows Laudau theory to restrict possible

order parameters and, consequently, the mixing coefficients

(Section 4.3.3).

For each irreducible representation of G(k), SARAh

presents the various stationary vectors and the associated

black and white point groups formed from the rotational parts

of the operations in G(k). This provides a simple symmetry

description that can be applied alike to commensurate and

incommensurate magnetic structures, and is one that will be

expanded upon in future updates. The utility of isotropy and

stationary groups is embedded into the integration with

FullProf (see Section 5) through the ordering of the basis

vectors selection tables.

4.3. Magnetic structures that involve several IRs

4.3.1. Primary and secondary order parameters

An important result of isotropy or stationary vector groups

is that, while irreducible representations are significant

because they correspond to orthogonal symmetry spaces,

Landau theory allows coupling between them. This can occur,

for example, when the same group appears in several irre-

ducible representations or when there are secondary order

parameters involving different irreducible representations to

that associated with the primary order parameter. The

strength of such coupling depends on the details of the

exchange terms and those in the Landau expansion. Within

the G(k) framework, common stationary vector groups and

group–subgroup relationships can be read from the SARAh

output to direct which basis vectors should correspondingly be

combined.

4.3.2. Exchange multiplets

Exchange multiplets are not a form of coupling, but their

consequences are often incorrectly interpreted as coupling, so

they will be discussed here. Conceived by Izyumov et al.

(1979), exchange multiplets are a method to recover the

magnetic structures possible when spin-orbit coupling is weak,

and so when the magnetic Hamiltonian is isotropic.

Their construction is essentially different from the spin

groups originally developed by Brinkman & Elliot (1966) and

championed by Opechowski (1986), where the symmetry

operations that act on position are decoupled from those that

act on the moment directions. Instead, for exchange multi-

plets, the isotropic structure is first considered as that which

corresponds to scalar basis vectors, which as of course

isotropic under crystallographic symmetry operations. The

axial property of the moments is then introduced, which, in the

presence of spin-orbit coupling, can cause the degenerate basis

vector space of scalars to become split.

Mathematically, exchange multiplets are determined by first

calculating the reducible scalar (permutation) representation,

� perm by taking an element g to be acting on atom j at ri in the

zeroth unit cell according to:

�
perm
ij ðgÞ ¼ �i;gj exp½� 2�ikðrgj � riÞ�: ð12Þ

These matrices will have character

�permðgÞ ¼
X

i

�i;gi exp½� 2�ikðrgi � riÞ�: ð13Þ

� perm can be decomposed over the irreducible representations

of G(k)

� perm ¼
X

�

nperm
� � �: ð14Þ

For each non-zero irreducible representation in this decom-

position, the direct product is taken with the axial vector

representation, ~V and the result decomposed over irreducible

representations of G(k).

� perm � ~V ¼ � mag ¼
X

�

nmag
� � �: ð15Þ

In so doing, this sequence creates separate insights while

recreating the decomposition of the magnetic representation,

whereas in Bertaut’s method, the permutation and axial vector

properties (with representations � perm and ~V, respectively)

are combined to make the magnetic representation, � mag

which is then decomposed.

The use of exchange multiplets reveals which irreducible

representations contained in � mag would be expected to be

coincident when the spin-orbit coupling is weak — the split-

ting of these multiplets from the state of degeneracy due to

spin-orbit coupling is analogous to the splitting of electronic

quantum levels in when a magnetic field is applied. As alluded

to earlier, there is no coupling energy involved in exchange

multiplets and it instead a technique to recover the situation of

an isotropic Hamiltonian.

SARAh displays the exchange multiplets together with the

stationary vector groups to help inform how and under what

circumstances irreducible representations may combine.

4.3.3. Application of Landau theory

This section will focus on results relevant to the current

implementation. Interested readers are pointed to excellent

monographs such as Landau & Lifshitz (1980), Lyubarskii

(1960), Tolédano & Tolédano (1987), Izyumov & Syro-
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myatnikov (1990) and Bradley & Cracknell (1972). Landau’s

theory of phase transitions is the main source of rules that

attempt to direct possible magnetic orderings. These rules are

derived as consequences from an expansion of the thermo-

dynamic potential, U, in terms of a power series involving one

or more order parameters.

When considering magnetic structures, the requirements

derived from Landau theory are necessarily dependent on the

approximations made in the series expansion, which begins

with the lower and upper limits of the power index.

A simple requirement for a phase transition to correspond

to a minimum in U is that there are no terms of order 1. The

minimal physical model from Landau theory then restricts the

series to terms of order 2. This approach is applied in many

works, though sometimes not explicitly which can lead to some

of the confusion. A result from Landau theory from the

order 2 expansion is that an invariant cannot be made from

coupling non-equivalent irreducible representations, leading

to what some refer to as the ‘rule of a single IR’. Conversely,

when a magnetic structure is observed that involves only a

single irreducible representation, it may be supposed that the

series is well approximated as being of order two.

As the upper limit is increased, this result may be replaced

by other sets of requirements or restrictions. In this manner,

Landau theory should not be taken as giving an unequivocal

rule. Instead it gives restrictions that are relevant for a parti-

cular approximation of the series expansion. Whether a

transition is required or assumed to be second order

(continuous) or first order (discontinuous), is also of funda-

mental importance in Landau theory and may affect the

results. However, care must be taken when assuming an order

for a transition, as the Hamiltonian may lead to a magnetic

structure that appears to follow the requirements of a second-

order phase transition because the terms that require it to be

first order have characteristics that are harder to observe.

4.3.4. Calculation of invariant polynomials

Following the methodology of Izyumov & Syromyatnikov

(1990), the invariant polynomials are constructed and

presented for different values of the stationary vectors of the

irreducible representations (Section 4.2), which we take as an

order parameter in the expansion of the thermodynamic

potential, up to order 6 in the power index, following

Section 4.2,

U ¼ U0 þ r2g2 þ r3g3 þ r4g4 . . .þ r6g6; ð16Þ

where g has components {�1, �2, . . . }.

Further, stability conditions are presented based on the

thermodynamic potential having a minimum from the first

derivatives ðdU=d�i ¼ 0), the second derivatives

(d2U=d�2
i > 0) and the requirement that the value of U be

positive at large values of the order parameter. It is suggested

that the restrictions from the first derivatives and to be posi-

tive definite be considered separately, as the magnetic struc-

ture involved may be metastable with respect to one or more

of the coefficients.

The calculation of coupled order parameters using

stationary vectors, via a reducible representation formed by

combining irreducible representations, allow the determina-

tion of which irreducible representations and isotropy groups

can combine at a magnetic phase transition, within the rele-

vant approximation of the series expansion (Stokes & Hatch

(1991). These have not yet been implemented in SARAh, and

instead the results of calculations based on Kronecker powers

are provided.

4.3.5. Decomposition of the Kronecker symmetrized power

Following Tolédano & Tolédano (1987), if a representation

� is carried by the space �, the symmetrized Kronecker power

[�n] carries the symmetrized nth power of � , � n. SARAh uses

this simple result to calculate possible couplings between the

irreducible representations that are associated with the

primary and secondary order parameters, in the manner of a

broad selection rule. Currently, these calculations assume the

mixed invariant is formed from a primary-order parameter of

up to a power of 8 and a linear term, i.e. the lowest order term,

from the secondary order parameter. Possible couplings may

thus be determined by decomposing the symmetrized

Kronecker power of an irreducible representation in G(k)

over other irreducible representations of G(k). The relevant

couplings are then tabulated. Details of the various poly-

nomial invariants can then be calculated with reference to the

results from Section 4.3.4.

Once the irreducible representations of the primary and

secondary irreducible representation are identified, the

decomposition of the symmetrized Kronecker powers can be

used to identify the minimal model of a suitable invariant.

4.4. Combining irreducible representations under time-

reversal–antiunitary theory

Information on corepresentations (Section 3.2) is included

as part of the representational theory calculations. Further

integrations into the calculations are ongoing.

5. Integration with refinement software

The web version of SARAh is integrated with FullProf,

marking an initial development of a refinement workflow that

allows experimental data to be refined from powder and

single-crystal neutron scattering diffractometers. This is

achieved by running SARAh calculations, which launch a

subsequent editor webpage for FullProf .pcr files. This

webpage contains summary results from the representational

analysis calculations, including information on stationary

vector groups and exchange multiplets. The basis vectors for

each irreducible representation are tabulated, allowing the

user to select those to be inserted into FullProf for refinement.

Separate tables are presented for stationary vector groups that

are laid out with maximal symmetry groups first to facilitate

use of these results.

Once basis vectors are selected, the user can chose between

creating a template phase, to be manually edited and incor-
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porated into the FullProf pcr file, automatically inserting a

tailored phase into the pcr file, or editing of a pcr file that

has an existing magnetic phase. The latter allows a magnetic

phase to be updated quickly by simply selecting the required

basis vectors and launching the edit.

The generated pcr information defines the magnetic

structure in terms of complex (or real) basis vectors, with

initial positions for each orbit, and the k vector used in the

symmetry calculations. Unit-cell parameters, the profile func-

tion and instrumental parameters are taken from a crystal-

lographic phase that matches the space group and atom

positions used in the symmetry calculations.

6. Other symmetries — magnetic space groups, colour

groups, spin space groups

Representation theory provides a general framework that

underpins the analysis of physical properties and character-

istics, such as magnetic structures. A key aspect of its flexibility

is that a core set of irreducible representations can be

expanded or reduced by introducing relevant symmetry

operators through induction. This is exemplified by the

extension of irreducible representations to corepresentations

and restriction to a subgroup, such as the relationship between

the unitary group of operations and the antiunitary group.

With this in mind, the paramagnetic magnetic space groups

(MSGs) are an extension of the crystallographic space group

G made by direct product with {E, R} to form the grey group

G0, and its subgroups. While MSGs are typically viewed as

being formed of the operators themselves, the MSGs can also

be viewed in terms of representation theory as corresponding

to the identify representation of G0 over the space of real

moments (Bertaut, 1968). This MSG representation may be

irreducible or reducible over the irreducible representations

of G(k). It may also be reducible over the representations

associated with more than 1 k vector. Therefore, if the MSG is

taken as the group to characterize the symmetry of a magnetic

structure, there is a natural connection with representation

theory.

Shubnikov’s work (Shubnikov, 1951; Shubnikov & Belov,

1964) triggered much subsequent activity in developing of

groups and constructs that could be applied as solutions to the

problem of describing magnetic structures. The development

to polychromatic groups (Belov & Tarkhova, 1956), and then

to spin-space groups (Brinkman & Elliot, 1966), took place

with remarkable speed (Zamorzaev & Palistrant, 1980).

In colour groups the two-value construct of the black and

white colours of MSGs is generalized to being a permutation

operation over a number of colour values, p. In the

P-symmetry groups each symmetry operation corresponds to

a fixed colour permutation: MSGs are P-symmetry groups

(Koptsik, 1988). Another type of colour groups are the

W-symmetry groups (Koptsik, 1975). These have the char-

acteristic that the colour permutation is not fixed to a

symmetry operation; rather, the colour permutation depends

on the atomic position to which the operation is being applied.

The links between representation theory and these

symmetry group are simply exemplified starting from the

Fedorov group where real one dimensional irreducible

representations have a one-to-one mapping to MSGs (two

colour P groups) formalized by the Indenbom–Niggli theorem

(Niggli, 1959; Indenbom, 1959). The stationary vectors of

multidimensional irreducible representations can be used to

identify symmetric subgroups that correspond to MSGs, and

more broadly, polychromatic-colour groups of both P and W

types. Additionally, exchange multiplets can be used to

recover the symmetry of the magnetic Hamiltonian that was

the driving cause for the development of spin groups

(Izyumov et al., 1979).

It is noteworthy that the complementarity of these frame-

works is not restricted to a simple mapping between groups

and irreducible representations, but also can be deeper, for

example when representation theory can be applied in the

derivation of the various groups.

7. Integration with other software

Users are advised of the potential need to change settings in

their web browser to enable the locally held pcr file to be

read and updated with the new version prepared by SARAh

and methods are given for several common browsers.
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