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This paper introduces the online software server SARAh—webRepresentational
Analysis which replaces the previous Windows-versions of SARAh— Represen-
tational Analysis and SARAh—Refine, and related theory. The new suite of web
apps carries out a range representational analysis calculations, including those
based on the works of Kovalev, Bertaut, Izyumov, Bradley, Cracknell, Birman
and Landau, for magnetic structures and electronic properties within frameworks
based on the crystallographic space groups and point groups. Irreducible represen-
tations are sourced from the works of Kovalev, tabulated and computations are car-
ried out on a server using Mathematica. The local user does not require a license
for Mathematica and the calculations are provided free of charge. SARAh—
webRepresentational analysis is available at: http://fermat.chem.ucl.ac.uk/spaces/willsgroup/

1. Introduction

While the use of representation theory was well established for
the calculation of physical properties of atomic systems [Eckart
(1930)] and crystals [Hund (1936)]; [Bouckaert, Smoluchowski
& Wigner (1936)], such as the splitting and degeneracies of
energy levels in materials with normal groups and black and
white groups, it was the work of Kovalev (1963, 1964) and
Bertaut (1968, 1971) that pioneered the use of basis vectors
calculated by representation theory for the description of mag-
netic structures. Despite the subsequent successes of represen-
tation theory in describing and analysing magnetic structures,
there was a gap between software that could perform represen-
tational analysis calculations, most notably MODY for DOS
[Sikora (1994)], and magnetic neutron diffraction refinement
codes which largely followed a crystallographic approach to
magnetic structures, such as in GSAS [Larson & Von Dreele
(1986)] where the relationships between the magnetic moments
had to be defined in symmetry operations as either black or
white, to encode the colour permutation of the (Shubnikov)
magnetic space groups (MSGs). While FullProf [Rodriguez-
Carvajal (1993)] had incorporated various descriptions for com-
mensurate and incommensurate structures, such as using rota-
tion matrices, integration of representational theory directly into
its refinements was to come later [Rodriguez-Carvajal (2005)].
The typical situation resembled that of the 1970s [Izyumov
& Ozerov (1970)] where refinement of a magnetic structure
required a time consuming trial and error process of entering
the symmetry constraints for each magnetic moment and test-
ing against experimental data.

The original release of SARAh—Representational Analysis
and SARAh—Refine [Wills (2000)] performed the calculations
of Representational Analysis using irreducible representations
calculated with a Visual Basic 6 translation of KAREP and then
projected basis vectors following the methods of Bertaut and
Izyumov. The results were integrated with the Rietveld analy-

sis program GSAS using SARAh—Refine. Rather than refining
magnetic moments directly, SARAh introduced a new protocol
where the mixing coefficients of the basis vectors were used
as refinement variables and applied global minimisation algo-
rithms based on Monte Carlo and Simulated Annealing meth-
ods1. This change away from conventional least-squares min-
imisation combined with the typical reduction in the number of
refined variables that came from representation theory, to allow
the creation of maps of χ2 against refinement parameters as a
window to explore the refinement’s modelling [Wills (2001)].
The functionality in SARAh then increased by incorporation
of the computer files of loaded representations from Kovalev
Tables as a source of irreducible representations (the 2K ver-
sion); integration with the subsequent inclusion of basis vectors
into FulProf [Rodriguez-Carvajal (2005)], and Topas. Routines
were also developed to determine the values of k-vectors by
Monte Carlo refinement of equal magnitude magnetic moments,
without further symmetry constraint, for the various character-
istic k-vectors of the Brillouin zone, a method named ‘Brillouin
zone indexing’ [Wills (2009)]. SARAh’s development moved in
2018 to a web system and a new software framework based on
Mathematica [Wolfram Research, Inc. (2024)].

Underlying the development and application of SARAh was
the goal of linking the results of representation theory with
refinements, and commonly used codes such as GSAS and Full-
Prof. The web version of SARAh seeks not only to repro-
duce the original functionality; it seeks to extend it by col-
lating a range of symmetry tools within a series of coherent
workflows. An area that will be covered in a later report is
the recent development of the SERENDIPITY protocol [Geor-
gopoulou (2023)], which can determine stability conditions for
an observed magnetic structure.

2. Software

The calculations in SARAh are carried out on a local
1 SARAh takes its name from the combination of Symmetry Annealing and Representational Analysis
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server using Mathematica. The web interface takes in user
data, performs the relevant calculation and then returns the
output for display. This is preferred over the application
of a database for flexibility and future development, but
user requests do take longer because of the computational
overheads. There are no separate programmes as part of
SARAh. Instead, web apps are formed that direct and inte-
grate the flow of various routines towards tailored goals and
these flows will be a particular feature of the development.
SARAh—webRepresentational analysis is freely available at:
http://fermat.chem.ucl.ac.uk/spaces/willsgroup/

3. Application of Kovalev’s Tables

This section introduces the main tables that are available in
the English versions of Kovalev’s published tables [Kovalev
(1965), (1993)] and via SARAh, though it should be noted that
Kovalev’s initial collection of Irreducible Representations of
the Space Groups was published earlier in Russian [Kovalev
(1961)]. At the moment the calculations are focussed on the
commonly found situation where there is a single k-vector and
full-group method has not yet been integrated. The tables do
contain more information than presented here and in future
developments more data will be presented.

3.1. Irreducible representations of the little group G(k)
For each Bravais lattice, Kovalev’s tables list a set of charac-

teristic vectors2, k, within the first Brillouin zone (BZ). Taking
G to be a crystallographic space group with symmetry oper-
ations g = {h | t}, where g involves a (proper or improper)
rotation h and a subsequent translation t, the set of all the rota-
tion operations h form the point group Ĝ. Application of Ĝ to
k transforms the vector into a number of vectors in reciprocal
space with equal modulus. The set of operations h ∈ Ĝ with
matrices Rh that leave k invariant within a reciprocal lattice
translation:

k′ = k.Rh + K, (1)

form a subgroup Ĝ(k) of the point group Ĝ that is termed
the point group of k, the little-point group of k or the little
co-group Ĝ(k) of k [Aroyo and Wondratschek 1995]. As this
point group is defined up to an equivalence in k, it may con-
tain more operations than the isotropy group of k [Tolédano &
Tolédano (1987)], which consists of those operations that leave
k unchanged and the two constructions should be differentiated.
The set of k-vectors, distinct up to the equivalence equation,
generated by application of Ĝ to k forms the star of the propa-
gation vector:

{k} = k1,k2, ...kn (2)

The subgroup of G consisting of elements, h ∈ Ĝ(k), whose
rotation parts leave k unchanged or invariant up to this equiv-
alence, forms the little group of the vector k, denoted as G(k).
This subgroup is fundamental to the application of group theory

to problems in condensed matter physics, including the descrip-
tion and analysis of magnetic structures. As the irreducible rep-
resentations of G(k) depend on the numerical value of k, some
attempts at tabulations made in the literature are quite volu-
minous, for example the tables of Miller & Love (1967). In
a remarkable tour de force to reduce such tables to a core,
Kovalev (1961) instead took advantage of a construction devel-
oped by Lyubarskii (1960) and presented the matrix representa-
tives of the so-called weighted or loaded representations, τ̂p(h)
of Ĝ(k) that are used to construct the small irreducible repre-
sentations τkp(g) of G(k) according to the equation:

τkp(g) = e−2πik.tτ̂p(h) (3)

Here the index p labels the irreducible representations. In
applying Eq. 3, the loaded irreducible representations have the
necessary mapping with the rotations of Ĝ(k) but for non-
symmorphic groups are not the irreducible representations of
the point group themselves. Where the space group operations
used in Kovalev’s tables do not match the cell choice and set-
tings currently used in the International Tables-A, transforma-
tions of the symmetry operations and k-vector are performed
[International Tables for Crystallography (2005)] by SARAh
to enable their use. Tables of the irreducible representations of
these groups G(k) are presented following a labelling scheme
exemplified by ‘k3t2’,where ‘k3’ is Kovalev’s index for the k-
vector type and ‘t2’ is the IR label. When working with mag-
netism and the simple groups, this label should be extended to
‘mk3t2’, where the prefix m indicates that magnetic structures
break time-reversal symmetry. In his tables Kovalev refers to
groups whose elements correspond to geometric rotations or
operations as simple groups3 to differentiate them from double
groups where they are matrix-rotations.

When working with the irreducible representations of the
space groups, it should be noted that the tables based on other
sources, most commonly those based on [Miller, S. C. & Love,
W. F. (1967)], such as available through the Bilbao Crystal-
lography Server [Aroyo et al. (2006)] and Isotropy [Stokes et
al. (2007)] may not feature identical irreducible representations
as the space group settings, symmetry operations and k-vectors
may differ.

3.2. Irreducible corepresentations of the little group G(k, θk)
Antiunitary symmetry was integrated with representation

theory by Wigner (1959) to introduce invariance with respect
to the time-reversal t → −t, or, as he thought more appropri-
ate, ‘reversal of the direction of motion’. The application of the
time-reversal operation, θ, brings together stationary states Ψ

and θΨ that have the same energy in quantum mechanics. Its
applicability to classical physical systems or to spinless quan-
tum theory comes via the operation of complex conjugation, i.e.
θ = K.

Using D to signify a corepresentation, Wigner’s work leads
to an algebra that follows from the properties of the unitary (g)
and antiunitary (a) operations:

2 The general k vector is added to Kovalev’s selection as k0.
3 this term is also used for groups with no self-conjugate subgroups [Dresselhaus et al (2008)]
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D(g j)D(gk) = D(gigk), D(g)D(a) = D(ga),
D(a)D(g)∗ = D(ag), D(a j)D(ak)

∗ = D(a jak).
The importance of complex conjugate in the above equa-
tions led Wigner to name these extensions, ‘corepresentations’.
Within the application of representational theory to magnetic
structures, these corepresentations are used with the direct prod-
uct of the crystal space group G or point group with the group
{E, θ}. A similar direct product of the crystal space group with
{E,R} is used to form the grey magnetic space groups, though
there time-reversal is the linear operation of moment rever-
sal R = 1′. This shared construction shows that the M(k) =
{E, θ} ⊗ G is a form of space time symmetry group [Birman
(1984)], though one that is over an antiunitary group. Kovalev
termed such antiunitary groups ‘neutral groups’, following the
language of colour symmetry [Senechal 1983] and to distin-
guish them from MSGs. Unitary operations appear in corep-
resentations as a unitary subgroup, which has allowed a short-
cut whereby some common properties may be determined with-
out calculation of the corepresentations themselves, explaining
the utility and importance of the irreducible representations of
G(k).

In Kovalev (1993), a process was laid out for the construc-
tion of the irreducible corepresentations of G(k, θk) from irre-
ducible representations of the unitary subgroup G(k) according
to 2 variations:

Variation I. When −k is not a member of {k} the corepre-
sentations are of type c and are over the neutral group M(k) =
G + θG. Taking the unitary and antiunitary operations as g and
a = θg, respectively, the matrix representatives of the corep-
resentation are constructed from irreducible representation, ∆,
and have the form:

D(g) =
(

∆(g) 0
0 ∆(g)∗

)
, D(a) =

(
0 κ∆(g)

∆(g)∗ 0

)
,

where for simple groups κ = 1 and for double groups κ = −1
(Section. 3.3).

Variation II. When −k is a member of {k}, the corepresen-
tation is over the group M(k) = G(k, a0) = G(k) + a0G(k).
Here, a0 is an antiunitary generating element that plays two
roles in the form of the irreducible corepresentations. It acts
in Variation II to extend the group to include the antiunitary
operations and is involved in relating the matrix representative
of the antiunitary operation to that of a member of the uni-
tary irreducible representation. This is particularly important in
magnetic structures where time-reversal links orbits of atomic
positions that are equivalent under G but are separated in G(k).
Through the given equations, its choice also defines the value
of the auxiliary matrix β where relevant. The matrices for the
unitary and antiunitary operations are given for 3 possible situ-
ations:

Type a. These contain only one irreducible representation, ∆.
D(g) = ∆(g), D(a) = ∆(aa−1

0 )β,
where β satisfies ββ∗ = ∆(a2

0) and β∆̄(g) = ∆(g)β.
Type b. This involves the same irreducible representation of

the unitary subgroup, ∆, twice:

D(g) =
(

∆(g) 0
0 ∆(g)

)
, D(a) =

(
0 ∆(aa−1

0 )β

−∆(aa−1
0 )β 0

)
,

with ββ∗ = −∆(a2
0) and β∆̄(g) = ∆(g)β.

Type c. Here two irreducible representations, ∆ and ∆̄, that are
not equivalent combine to form an irreducible corepresentation.

D(g) =
(

∆(g) 0
0 ∆̄(g)

)
, D(a) =

(
0 ∆(aa0)

∆(a−1
0 a)∗ 0

)
,

In these, β is an auxiliary matrix which satisfies
ββ∗ = ∆(a2

0), β∆̄(g) = ∆(g)β
Wigner’s labeling of the types of corepresentations corre-

sponds to Kovalev’s classifications: type 1 (Variation II, type
a), type 2 (Variation II, type b), and type 3 (Variation I and
Variation II, type c). The present author believes that historical
developments have resulted in a sometimes confusing literature
on corepresentations. Interested readers are encouraged to con-
sult [Frei (1966)] and [Birman(1984)].

When applied to the representation analysis of magnetic
structures, consequences of the extension from irreducible rep-
resentations to corepresentations are most commonly seen as
being responsible for joining coincidences between eigenval-
ues. This occurs, for example, when type c (Variation II) irre-
ducible representations come together to form a corepresen-
tation that links under time-reversal the orbits of a crystallo-
graphic site that are disjoint under G(k) [Radaelli and Chapon
(2007)].

Tables of irreducible corepresentations formed from the irre-
ducible representations of G(k) are presented along with details
of the a0 and β-matrices, where used. To encourage consider-
ation of the consequences of the phase relationships between
unitary and antiunitary components, the antiunitary parts are
presented with 0 and π phase shifts. θ is used in labelling
of the antiunitary operation and the user should adjust this to
K when relevant. Corepresentations are presented following a
labelling scheme exemplified by ‘ak3t2,’, ‘ak3t2+t4’; here ‘ak3’
is Kovalev’s index for the k-vector type for the antiunitary
group, there is no indicator for a double group so the group is
simple, there follows labels for the simple group irreducible rep-
resentations used in the corepresentation construction and these
have the form ‘t2+t4’ for variation II, type c and ‘t2x2’ for varia-
tion II type b. This scheme will be extended to complete groups
by changing IR labels to majuscules, and to double groups by
inclusion of ‘†’.

3.3. Irreducible representations of the double-groups of G(k)†

The application of group theory to crystallography typically
pertains to classical systems or quantum states with integer
angular momentum quantum numbers. For species with half-
integer angular momentum quantum numbers, such as elec-
trons, rotation by 4π rather then 2π is required to reverse the
direction of momentum [Bethe (1929)]. This necessitates an
extension from conventional geometry (simple groups) to either
double-valued representations of single groups or a doubling
of the group with single-valued representations [Opechowski
(1940)]. Information on the latter, and a process for forming
double groups and their irreducible representations are in pre-
sented in Kovalev (1993). This begins from taking the Euler
angles for each proper rotation, h and deriving a set of ‘matrix-
rotations’ (u-matrices). Such a structure creates a fixed cor-
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respondence to the h rotations which allows the u-matrices,
u(h), to be labelled according to the rotational symbol h, and
their negative −u(h) as h∗. In this way, a simple group H
with rotations h1, h2, h3, . . . , hn forms the double group Hu with
the matrix-rotations h1, h∗1 , h2, h∗2 , h3, h∗3 , . . . , hn, h∗n . Irreducible
representations of the double groups have the notable property
of being either even, π(h) = π(h∗), or odd, π(h) = −π(h∗).

The multiplication table for the matrix-rotations of the crys-
tallographic setting and the irreducible representations formed
from G(k) are presented. These irreducible representations fall
into two categories— those of the simple group extended to
the double group are labelled by τ , and those constructed from
the loaded irreducible representations π̂(h) of the double group
Hu(k) according to:

πkp(g) = e−2πik.tπ̂p(h) (4)

are labelled by π.
Only τ and π irreducible representations that are even and

odd, respectively, have application to physical systems [Kovalev
(1993)] [Dresselhaus et al. (2008)] and are presented following
a labelling scheme exemplified by ‘†k3t2’ and ‘†k3p1’; here
†’ indicates a double group, ‘k3’ is Kovalev’s index for the k-
vector type, and ‘t2’ and ‘p1’ are IR labels for τ and π type
irreducible representations, respectively.

4. Calculation frameworks

In addition to providing a web-based source of Kovalev’s tables,
expanded and tailored to the user’s problem, SARAh performs
calculations based on representation theory. While this tech-
nique is most commonly associated with the celebrated paper
[Bertaut (1968)]; Kovalev (1963) extended Dzyaloshinsky’s
(1958) work to presented a clear and detailed methodology
based on Landau theory, the application of local symmetry
requirements, and the calculation of the thermodynamic poten-
tial (Section 4.3.3) in terms of invariant combinations of basis
functions associated with the irreducible representations of the
space group, G(k) (Section 3.1):

Φ = Φ0+I0(T−θ) f 2(ci,α)+
∑
α

Aα f 4
α(ci,α)+

∑
α

Aα f 6
α(ci,α),

(5)
where f 2, f 4

α and f 6
α are invariants constructed from coeffi-

cients ci of the basis vectors with components α = (x, y, z) that
transform according to a compete irreducible representation of
the group G (Section 4.2), θ is the transition temperature, and
I0 > 0 at the transition temperature. These calculations enabled
the determination of phase diagrams of possible magnetic struc-
tures when the translation properties of the magnetic structure
were the same as, or different to, those of the crystallographic
structure. This was an important contribution that effectively
combined Landau theory [Landau & Lifshits (1980)], magnetic
symmetry and representation theory.

A notable difference between the methods of Kovalev and
Bertaut was the former’s focus on transformation of real mag-
netic moments under the magnetic symmetry while the latter

made explicit use of a permutation representation and Fourier
components made up of complex basis vectors.

4.1. The little group method— irreducible representations of
G(k)

Curently, projection of the basis vectors for possible mag-
netic structures in SARAh follows the method of Bertaut and
begins from the magnetic representation, Γmag, which describes
how the magnetic moments at the atomic positions change
under G(k). This representation can be decomposed into irre-
ducible representations of G(k) according to

Γ =
∑
ν

nνΓν (6)

where for a group of order n(G(k)),

nν =
1

n(G(k))

∑
g∈G(k)

χΓmag(g)χΓν
(g)∗ (7)

The basis vectors associated with an irreducible representation
are calculated using a projection operator:

ψiλ
ν =

∑
g∈G(k)

d∗λν (g)δi,gi e−2πik·(rgi−ri)det(Rh)Rhφβ (8)

that when applied to a set of trial functions φβ , commonly:

φ1 = (1 0 0), φ2 = (0 1 0),φ3 = (0 0 1), (9)

will project out a basis of the irreducible representation. Here,
Rh is the rotational matrix of symmetry operation g = {h|τ},
and λ is the element of the representation matrix. In SARAh
the final basis vectors come directly from Equation 8 and are
not adjusted by normalization of an orthogonalization process,
such as the Gram-Schmidt algorithm.

There are three features of representational analysis of mag-
netic structures that are worthy of emphasis. Firstly, projection
from an irreducible representation of dimension d can result
in up to 3d independent basis functions. When d > 1, use of
high symmetry combinations of these basis vectors can sim-
plify the related analysis of possible magnetic structures (Sec-
tion 4.2). Secondly, the basis vectors are Fourier components
characterised by the propagation vector k and following Equa-
tion 8 can be complex. Thirdly, the magnetic structure moment
can be constructed from a simple sum of the basis vectors asso-
ciated with the required propagation vectors and representa-
tions, with the contribution from each basis vector ψi weighted
by a mixing coefficient, Cν , according to:

m j =
∑
ν,k

Ck
ν ψ

k
i,ν (10)

This simple summation contains some of the key flexi-
bilities in the application of representation theory to mag-
netic structures. What is included in the summation is also
the source of many the arguments and misunderstandings. A
common fallacy that should be corrected is the belief that
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Betaut’s work restricted the basis vectors to a single irreducible
representation— this view is incorrect as he carefully to sig-
nalled more sophisticated scenarios, noting ‘If the spin compo-
nents Sα and Sβ belong to different irreducible representations
Γα and Γβ , the spin Hamiltonian must have terms of order four
at least’ [Bertaut (1968)], in line with the arguments from Lan-
dau theory that follow in Section 4.3.3.

Where the refinement code is able to use complex basis vec-
tors directly, as is the case in FullProf, there is no need to
make the magnetic moment components real during the refine-
ment. Instead, the basis vectors that correspond to −k and the
complex-conjugate representation may be added to Equation 10
after the refinement, with matched coefficients, to form the final
magnetic structure of real moments. This can be done in Full-
Prof.

4.2. Subgroups, stationary vectors, isotropy groups and order
parameters

When the irreducible representation has dimension > 1, high
symmetry basis vector spaces and related magnetic structures
can be constructed by applying restrictions to the values of the
mixing coefficients. These are commonly referred to as isotropy
groups or stationary vector groups, and are an example of where
commonality between the mathematics of representation theory
and magnetic space groups allows their frameworks to be used
together.

The application of these isotropy groups grew from the prob-
lem of determining the possible subgroups of a parent group.
Inspection of an irreducible representation of dimension 1 gives
all the symmetry operations that have a character of unity and
can thus be combined to form a subgroup. Irreducible represen-
tation of dimension > 1 can also be used to find subgroups by
looking at operations that leave a vector in irreducible represen-
tation space, η invariant:

d(g)η = η (11)

Here d(g) is the matrix representative of g. By suitable choice
of η, all subgroups associated with an irreducible representation
can be determined. The lowest symmetry subgroup is termed
the kernel, and the higher symmetry groups are called epiker-
nels [Ascher, 1977]. To find the magnetic space groups asso-
ciated with an irreducible representation, one can identify the
operations that reverse η with the antisymmetric operations of
the magnetic space group [Stokes and Hatch, 1988]. As mag-
netic space groups involve real atomic moments, the mapping
is direct when an irreducible representation is real, but when
the irreducible representation is complex and not equivalent to a
real irreducible representation, the physically irreducible repre-
sentation can be applied. These are formed using a block matrix
structure of the direct sum d(g) ⊕ d(g)∗. A further connection
with representation theory is that the vector η is made from the
coefficients in Equation 10. A form of η that corresponds to a
high symmetry structure within the irreducible representation
basis vector space, restricts the coefficients in the basis vector
summation and so corresponds to particular moment directions

in the magnetic structure.
Ascher (1966) conjectured that for a continuous phase tran-

sition between two phases with symmetries H and L < H,
the symmetry of L is always a maximal subgroup of H. This
provided a link between active representations and the possi-
ble group L, and can be thought of as a requirement that there
are a minimum in the thermodynamic potential associated with
a maximal isotropy group but not the kernel. Subsequently,
Mukamel & Jaric (1983) provided the first couterexamples to
this conjecture involving quartic terms, with more examples
found later [Michel (1984)]. Despite these failings, maximal
subgroups do continue to provide an excellent starting points for
considering possible magnetic structures [Aroyo et al. (2006)],
in particularly in quartic Hamiltonians.

In this section, stationary vectors in irreducible represen-
tation space were introduced as an abstract tool that can be
used to determine subgroups and the respective values of
high-symmetry mixing coefficients. They also have physical
significance— in the Landau theory of phase transitions, they
can define an order parameters of the expansion. Through this
step, the mixing coefficients that construct a magnetic structure
in Equation 10 can be related to polynomial invariants, stabil-
ity conditions and coupling between irreducible representations.
This then allows Laudau theory to restrict possible order param-
eters and, consequently, the mixing coeffcients (Section 4.3.3).

For each irreducible representation of G(k), SARAh presents
the various stationary vectors and the associated black and white
point groups formed from the rotational parts of the operations
in G(k). This provides a simple symmetry description that can
be applied alike to commensurate and incommensurate mag-
netic structures, and is one that will be expanded upon in future
updates. The utility of isotropy and stationary groups is embed-
ded into the integration with FullProf (Section 5) through the
ordering of the basis vectors selection tables.

4.3. Magnetic structures that involve several IRs

4.3.1. Primary and secondary order parameters An impor-
tant result of isotropy or stationary vector groups is that, while
irreducible representations are significant because they corre-
spond to orthogonal symmetry spaces, Landau theory allows
coupling between them. This can occur, for example, when the
same group appears in several irreducible representations or
when there is a secondary order parameter. The strength of such
coupling depends on the details of the exchange terms and those
in the Landau expansion. Within the G(k) framework, common
stationary vector groups and group–subgroup relationships can
be read from the SARAh output to direct which basis vectors
should correspondingly be combined.

4.3.2. Exchange multiplets Exchange multiplets are not a
form of coupling, but their consequences are often incorrectly
interpreted as coupling, so they will be discussed here. Con-
ceived by Izyumov et al. (1979), exchange multiplets are a
method to recover the magnetic structures possible when spin-
orbit coupling is weak, and so when the magnetic Hamiltonian
is isotropic.
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Their construction is essentially different from the spin
groups originally developed by Brinkman & Elliot (1966) and
championed by Opechowski (1986), where the symmetry oper-
ations that act on position are decoupled from those that act
on the moment directions. Instead, for exchange multiplets, the
isotropic structure is first considered as that which corresponds
to scalar basis vectors, which as of course isotropic under crys-
tallographic symmetry operations. The axial property of the
moments is then introduced, which, in the presence of spin-orbit
coupling, can cause the degenerate basis vector space of scalars
to become split.

Mathematically, exchange multiplets are determined by first
calculating the reducible scalar (permutation) representation,
Γperm by taking an element g to be acting on atom j in the zeroth
unit cell according to:

Γ
perm
i j (g) = δi,g j e−2πik·(rg j−ri). (12)

These matrices will have character

χperm(g) =
∑

i

δi,gi e−2πik·(rgi−ri). (13)

Γperm can be decomposed over the irreducible representations
of G(k)

Γ
perm =

∑
ν

nperm
ν Γν (14)

For each non-zero irreducible representation in this decomposi-
tion, the direct product is taken with the axial vector represen-
tation, Ṽ and the result decomposed over irreducible represen-
tations of G(k).

Γ
perm × Ṽ = Γ

mag =
∑
ν

nmag
ν Γν (15)

In so doing, this sequence creates separate insights while
recreating the decomposition of the magnetic representation,
whereas in Bertaut’s method, the permutation and axial vector
properties (with representations Γperm and Ṽ , respectively) are
combined to make the magnetic representation, Γmag which is
then decomposed.

The use of exchange multiplets reveals which irreducible rep-
resentations contained in Γmag would be expected to be coinci-
dent when the spin-orbit coupling is weak — the splitting of
these multiplets from the state of degeneracy due to spin-orbit
coupling is analogous to the splitting of electronic quantum lev-
els in when a magnetic field is applied. As alluded to earlier,
there is no coupling energy involved in exchange multiplets and
it instead a technique to recover the situation of an isotropic
Hamiltonian.

SARAh displays the exchange multiplets together with the
stationary vector groups to help inform how and under what
circumstances irreducible representations may combine.

4.3.3. Application of Landau theory This section will focus
on results relevant to the current implementation. Interested
readers are pointed to excellent monographs such as Landau

& Lifshits (1980), Lyubarskii (1960), Tolédano & Tolédano
(1987), [Izyumov & Syromyatnikov (1990)] and [Bradley &
Cracknnell (1972)]. Landau’s theory of phase transitions is the
main source of rules that attempt to direct possible magnetic
orderings. These rules are derived as consequences from an
expansion of the thermodynamic potential, Φ, in terms of a
power series involving one or more order parameters.

When considering magnetic structures, the requirements
derived from Landau theory are necessarily dependent on the
approximations made in the series expansion, which begins
with the lower and upper limits of the power index.

A simple requirement for a phase transition to correspond to
a minimum in Φ is that there are no terms of order 1. The mini-
mal physical model from Landau theory then restricts the series
to terms of order 2. This approach is applied in many works,
though sometimes not explicitly which can lead to some of the
confusion. A result from Landau theory from the order 2 expan-
sion is that an invariant cannot be made from coupling non-
equivalent irreducible representations, leading to what some
refer to as the ‘rule of a single IR’. Conversely, when a magnetic
structure is observed that involves only a single irreducible rep-
resentation, it may be supposed that the series is of order two.

As the upper limit is increased, this result may be replaced
by other sets of requirements or restrictions. In this manner,
Landau theory should not be taken as giving an unequivocal
rule. Instead it gives restrictions that are relevant for a partic-
ular approximation of the series expansion. Whether a transi-
tion is required or assumed to be second-order (continuous) or
first-order (discontinuous), is also of fundamental importance in
Landau theory and may affect the results. However, care must
be taken when assuming an order for a transition, as the Hamil-
tonian may lead to a magnetic structure that appears to follow
the requirements of a second-order phase transition because the
terms that require it to be first-order have consequences that are
harder to observe.

4.3.4. Calculation of invariant polynomials Following the
methodology of [Izyumov & Syromyatnikov (1990)] the invari-
ant polynomials are constructed and presented for different val-
ues of the stationary vectors of the irreducible representations
(Section 4.2), which we take as an order parameter in the expan-
sion of the thermodynamic potential, up to order 6 in the power
index, following Section 4.2:

Φ = Φ0 + r2η
2 + r3η

3 + r4η
4...+ r6η

6 (16)

where η has components {η1, η2, . . . }.
Further, stability conditions are presented based on the ther-

modynamic potential having a minimum from the first deriva-
tives (dΦ/dηi = 0), the second derivatives (d2Φ/dη2

i > 0) and
the requirement that the value of Φ be positive at large values of
the order parameter. It is suggested that the restrictions from the
first derivatives and to be positive definite be considered sep-
arately, as the magnetic structure involved may be metastable
with respect to one or more of the coefficients.

The calculation of coupled order parameters using station-
ary vectors, via a reducible representation formed by combining
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irreducible representations, allow the determination of which
irreducible representations and isotropy groups can combine at
a magnetic phase transition, within the relevant approximation
of the series expansion [Stokes & Hatch (1991)]. These have
not yet been implemented in SARAh, and instead the results of
calculations based on Kronecker powers are provided.

4.3.5. Decomposition of the Kronecker symmetrized power
Following Tolédano & Tolédano (1987), if a representation Γ

is carried by the space ε, the symmetrized Kronecker power
[εn] carries the symmetrized nth power of Γ, Γn. SARAh uses
this simple result to calculate possible couplings between the
irreducible representations that correspond to the primary and
secondary order parameters, in the manner of a broad selection
rule. Currently, these calculations assume the mixed invariant is
formed from a primary-order parameter of up to a power of 8
and a linear term, i.e. the lowest order term, from the secondary-
order parameter. Possible couplings may thus be determined
by decomposing the symmetrized Kronecker power of an irre-
ducible representation in G(k) over other irreducible repre-
sentations of G(k). The relevant couplings are then tabulated.
Details of the various polynomial invariants can then be calcu-
lated with reference to the results from Section 4.3.4.

Once the irreducible representations of the primary and sec-
ondary irreducible representation are identified, the decomposi-
tion of the symmetrized Kronecker powers can be used to iden-
tify the minimal model of a suitable invariant.

4.4. Combining irreducible representations under time-
reversal–antiunitary theory

Information on corepresentations (Section 3.2) is included as
part of the representational theory calculations. Further integra-
tions into the calculations are ongoing.

5. Integration with refinement software
The web version of SARAh is integrated with FullProf, mark-
ing an initial development of a refinement workflow that allows
experimental data to be refined from powder and single crystal
neutron scattering diffractometers. This is achieved by running
SARAh calculations, which launch a subsequent editor web-
page for FullProf pcr files. This webpage contains summary
results from the representational analysis calculations, includ-
ing information on stationary vector groups and exchange mul-
tiplets. The basis vectors for each irreducible representation are
tabulated, allowing the user to select those to be inserted into
FullProf for refinement. Separate tables are presented for sta-
tionary vector groups that re laid out with maximal symmetry
groups first to facilitate use of these results.

Once basis vectors are selected, the user can chose between
creating a template phase, to be manually edited and incorpo-
rated into the FullProf pcr file, automatically inserting a tailored
phase into the pcr file, or editing of a pcr file that has an exist-
ing magnetic phase. The latter allows a magnetic phase to be
updated quickly by simply selecting the required basis vectors
and launching the edit.

The generated pcr information defines the magnetic structure
in terms of complex (or real) basis vectors, with initial positions

for each orbit, and the k-vector used in the symmetry calcula-
tions. Lattice parameters, the profile function and instrumental
parameters are taken from a crystallographic phase that matches
the space group and atom positions used in the symmetry cal-
culations.

6. Other symmetries— magnetic space groups, colour
groups, spin space groups
Representation theory provides a general framework that under-
pins the analysis of physical properties and characteristics, such
as magnetic structures. A key aspect of its flexibility is that
a core set of irreducible representations can be expanded or
reduced by introducing relevant symmetry operators through
induction. This is exemplified by the extension of irreducible
representations to corepresentations and restriction to a sub-
group, such as the relationship between the unitary group of
operations and the antiunitary group. With this in mind, the
paramagnetic magnetic space groups (MSGs) are an extension
of the crystallographic space group G made by direct product
with {E,R} to form the grey group G′, and its subgroups. While
MSGs are typically viewed as being formed of the operators
themselves, the MSGs can also be viewed in terms of repre-
sentation theory as corresponding to the identify representation
of G′ over the space of real moments [Bertaut (1968)]. This
MSG representation may be irreducible or reducible over the
irreducible representations of G(k). It may also be reducible
over the representations over more than 1 k-vector. Therefore,
if the MSG is taken as the group to characterise the symme-
try of a magnetic structure, there is a natural connection with
representation theory.

Shubnikov’s work [Shubnikov (1951), Shubnikov & Belov
(1964)] triggered a lot of subsequent activity in developing of
groups and constructs that could be applied as solutions to the
problem of describing magnetic structures. The development to
polychromatic groups [Belov & Tarkhova (1956)], and then to
spin-space groups [Brinkman & Elliot (1966)], took place with
remarkable speed [Zamorzaev & Palistrant (1980)].

In color groups the 2-value construct of the black and white
colors of MSGs is generalised to being a permutation operation
over a number of color values, p. In the P-symmetry groups
each symmetry operation corresponds to a fixed color permuta-
tion: MSGs are P-symmetry groups [Koptsik (1988)]. Another
type of color groups are the W -symmetry groups [Koptsik
(1975)]. These have the characteristic that the color permutation
is not fixed to a symmetry operation; rathe, the color permuta-
tion depends on the atomic position to which the operation is
being applied.

The links between representation theory and these symme-
try group are simply exemplified starting from the Fedorov
group where real one dimensional irreducible representations
have a one-to-one mapping to MSGs (2 color P-groups) forml-
ized by the Indenbom-Niggli theorem[Niggli (1959), Indenbom
(1959)]. The stationary vectors of multi-dimensional irreducible
representations can be used to identify symmetric subgroups
that correspond to MSGs, and more broadly, polychromatic-
color groups of both P and W types. Additionally, exchange
multiplets can be used to recover the symmetry of the magnetic
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Hamiltonian that was the driving cause for the development of
spin groups [Izyumov et al. (1979)].

It is noteworthy that the complementarity of these frame-
works is not restricted to a simple mapping between groups and
irreducible representations, but also can be deeper, for example
when representation theory can be applied in the derivation of
the various groups.

7. Integration with other software

Users are advised of the potential need to change settings in
their web browser to enable the locally held pcr file to be read
and updated with the new version prepared by SARAh and
methods are given for several common browsers.

ASW thanks the members of the IUCr Commission on Mag-
netic Structures for many inspiring conversations.
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