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1 Symmetry in the Solid State

1.1 Introduction

The aim of this section of the course is to reiterate the concepts of symmetry that you are

hopefully already familiar with. A very important extension will also be made to describe the

translational properties of extended lattices and the following discussion will be restricted to

solids that have long-range translational order, i.e. to crystals.

Reading:

• Chemical Applications of Group Theory, F. A. Cotton (John Wiley and Sons, New York

1971) Chapters 4-6.

• Symmetry Principles and Magnetic Symmetry in Solid State Physics, S.J. Joshua (Adam

Hilger, Bristol, 1991) Chapters 2 and 3.

1.2 Extending Symmetry Operations From a Molecule to a Solid

I will assume that the reader is familiar with the concepts of molecular symmetry: of point

groups, their symmetry operations, the character tables of their irreducible representations, and

the basis functions associated with them that can be used to describe the atomic orbitals or

molecular vibrations. What we will now do is expand upon these ideas and bring them into the

context of the crystalline solid: a system with translational symmetry.

The first things that we must extend when we go from a molecule to a crystalline solid are

the symmetry operations themselves. While for a molecule and a point group there are 5 types

of symmetry operation (Table 1), in a solid, translations are also possible. These gives rise to 2

new types of symmetry operations (Table 2).

The simplest mathematical description of a symmetry operation is a matrix that acts to

change the coordinates of a point. If we are dealing with a molecule and a symmetry operations
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Symmetry operation Symmetry element Symbol
Identity (do nothing) E
Rotation by 360◦/n n-fold axis Cn
(a ‘proper’ rotation)

Reflection mirror plane σv, σh or σd
Inversion Centre of inversion i

Rotation by 360◦/n n-fold axis + a centre of inversion Sn
followed by inversion

(an ‘improper’ rotation)

Table 1: Symmetry operations in point groups (isolated molecules).

Symmetry operation Symmetry element Symbol
Rotation + translation Screw axis Nj

Reflection + translation Glide plane a, b, c, n, d

Table 2: Additional symmetry operations present in extended solids (crystals).

without translations, they can be represented as 3× 3 matrices. For example, the operations E,

I , and C2z can be represented by the following matrices:

E =

 1 0 0
0 1 0
0 0 1

 (1)

I =

 1̄ 0 0
0 1̄ 0
0 0 1̄

 (2)

C2z =

 1̄ 0 0
0 1̄ 0
0 0 1

 (3)

The operation of a rotational symmetry element, R, on an atomic position vector r to create the

new position vector r′ is therefore

r′ = Rr (4)

As an example let’s apply these symmetry operations to a position with the coordinates
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(x, y, z). The position generated by the application of E to (x, y, z) is:

 1 0 0
0 1 0
0 0 1


 x
y
z

 =

 x
y
z

 (5)

The position generated by the application of the inversion centre, I , to (x, y, z) is:

 1̄ 0 0
0 1̄ 0
0 0 1̄


 x
y
z

 =

 x̄
ȳ
z̄

 (6)

The position generated by the application of the reflection C2z to (x, y, z) is:

 1̄ 0 0
0 1̄ 0
0 0 1


 x
y
z

 =

 x̄
ȳ
z

 (7)

In the case of screw axes and glide planes, i.e. symmetry operations that involve a transla-

tion, we can either write the action of the symmetry operation on the point (x, y, z) in a form

with separate rotational and translational parts. As an example, let’s look as the screw axis made

up of the C2z rotation and the translation (0.75 0.25 0.5). This can be written in separate parts

as a rotation followed by a translation:

 1̄ 0 0
0 1̄ 0
0 0 1

 +

 0.75
0.25
0.5

 (8)

or as a combined (4× 4) matrix


1̄ 0 0 0.75
0 1̄ 0 0.25
0 0 1 0.5
0 0 0 1

 (9)

For clarification, the combined form is made up of the rotational part:
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
1̄ 0 0 −
0 1̄ 0 −
0 0 1 −
− − − −

 (10)

and the translational part:


− − − 0.75
− − − 0.25
− − − 0.5
− − − −

 (11)

, with some zeros and a ‘1’ that are required to finish the matrix


− − − −
− − − −
− − − −
0 0 0 1

 (12)

Question: Work through the above matrix equation to convince yourself that the application of

the 4× 4 matrix is indeed equivalent to use of a 3× 3 matrix and a separate translation part.

1.3 From 32 Point Groups to 230 Space Groups

Now that we have extended our notions of symmetry operations from a point to a crystalline

solid, it is useful to introduce the concept of a space group. Just as the set of rotational symmetry

operations that describe a point is called a point group, the set of rotation-translation operations

that describe a propagating space is called a space group. The properties of a space group are

exactly the same as those of a point group - they both follow the mathematical rules for a group.

If G is a group, the symmetry elements A,B,C... follow the rules shown in Table 3:

Given these rules and the different types of translational symmetry (screw axes and glide

planes) that are possible in a solid, it can be shown that there are 230 types of space groups

for three dimensional systems- solids are therefore far more complex than molecules, where

commonly only 32 point groups are used.
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1. they are a set of elements A,B,C, ...
2. the product of 2 elements is also a member of the group AB ∈ G
3. the product is associative A(BC) = (AB)C
4. there exists a unique identity element E
5. every element has a unique inverse AA−1 = A−1A = E

Table 3: The definition of the Group G in terms of its symmetry elements.

In the rest of this text we will use the notation G0 to represent the space group of the crystal

before the magnetic transition.

1.4 Propagation of a magnetic structure through a crystal– Bloch waves

Crystal structures are constructed from a unit cell that is repeated along the three directions of

the crystal axes. Collective phenomena, such as vibrations or electronic bands, also propagate

through the crystal structure. The propagation of magnetic structurs through a solid can be

described using plane waves, Bloch waves. These define the atomic moments of any atom by

relating it to that of the related atom in the zeroth unit cell using a phase relation. The phase

relation is defined by the translational separation, ~t, of the two atoms and a propagation vector,

~k. 2

If the moment vector of an atom in the zeroth cell, atom i, is given by Ṽi = (mai mbi mci)

and Ṽj = (maj mbj mcj) corresponds to that for another equivalent atom, atom j, that is related

to the first by the translation ~t = ~Vj − ~Vi. The magnetic moment of atom j with respect to atom

i is given by:

Ṽj = Ṽiexp(−2π~k · ~t) (13)

which is the equation of a plane wave. Expanding the exponential this can be written:

2I am using the arrow vector notation to emphasise that we are working with vectors as it is very important to
follow the phases determined from related scalar products.
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Ṽj = Ṽi
[
cos(−2π~k · ~t) + isin(−2π~k · ~t)

]
(14)

If ~k and ~t are such that the sine component vanishes, we see that the moment vector propa-

gates as a cosine function.

Ṽj = Ṽicos(−2π~k · ~t) (15)

From this we see that ~k corresponds to a frequency of the wave measured in terms of unit

cells. (As it is a rciptocal space vector, it is also the inverse of the wavelength.)

1.4.1 The Little Group Gk

The symmetry operations of G0 that are consistent with the translational periodicity defined by

~k are those that leave the ~k vector invariant. Only the rotational parts of the symmetry operations

change ~k. Therefore, if the action of the rotational part of a symmetry operation on ~k is written

~k′ = ~kR (16)

, then the symmetry operations that leave ~k invariant are those that obey the equation

~k′ = ~k ± ~τ (17)

where ~τ is a primitive lattice vector. The group of symmetry operations that obey this relation

are called the ‘group of the propagation vector’, or the little group Gk.

Confusion can often be caused when working with space groups in a centred setting, for

example ~k = (0 0 1) in a body-centred lattice corresponds to ~k = (0.5 0.5 0.5) in a primitive

setting. For ease, it is recommended to convert propagation vectors and space group symmetry

operations to a primitive setting when determining the little groups Gk.

7



An extension to Gk can be made by bringing together several symmetry-related propagation

vectors, ~k1, ~k2, ... to form G{k}. Such magnetic structures are termed multi-k structures. Partic-

ularly important with using Landau theory is the extended group Gk,−k as this brings together

complex basis vectors with their complex conjugate to make real moments.

1.4.2 From Space Groups, G0, to Little Groups, Gk

At the moment we have discussed only crystallographic space groups. It is important to realise

that other types of space groups are possible: ones made up of only some of the elements of a

crystallographic space group. While these space groups follow all the rules of groups, they do

not contain enough symmetry elements to describe a crystal structure - they are subgroups of the

crystallographic space groups. To make the subgroups of a group, its symmetry operations are

divided in such a way that each subgroup contains the same number of symmetry operations, i.e.

the subgroups are of the same order. No symmetry operations are shared between the subgroups

and they are independent groups.

In this section we introduced the propagation vector, ~k, and divide the space groups into

symmetry elements according to how they changed ~k; we classified the symmetry operations

according to the symmetry of how they affect ~k: whether they change it or leave it invariant. As

an example, let’s look at the primitive orthorhombic space group (Pmn21, number 31) which

has the following symmetry operations:

• g1: x, y, z

• g2: x̄+ 1
2
, ȳ, z + 1

2

• g3: x+ 1
2
, ȳ, z + 1

2

• g4: x̄, y, z
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Let’s first consider the application of these operations on the following propagation vectors

~k1 = (0 0 0), k2 = (0 0 0.5), ~k3 = (0.1 0 0). (Remember that only the rotational part is

used.)

Trivially, we see that for ~k1 = (0 0 0) all the symmetry elements leave it invariant

~k2 = (0 0 0.5) gives g1
~k2 = (0 0 0.5)

similarly

~k2g2 = (0 0 0.5)

~k2g3 = (0 0 0.5)

~k2g4 = (0 0 0.5)

Again, all the symmetry operations leave this propagation vector invariant

Now changing to ~k3 = (0.1 0 0), as find that action of these symmetry operations on ~k3 gives:

~k3g1 = (0.1 0 0)

~k3g2 = (−0.1 0 0)

~k3g3 = (0.1 0 0)

~k3g4 = (−0.1 0 0)

so we see that the action of the symmetry operations on the last propagation vector, ~k3, separates

them into 2 classes: those that leave ~k3 invariant (g1 and g3), and those that form the symmetry-

related propagation vector : ~k3, i.e. g2 and g4.

1.5 Effects of Symmetry Operations on an Atom and its Magnetic Mo-
ment

Once we have defined the periodicity of how the magnetic structure propagates through the

crystal and found which symmetry operators are compatible with it, i.e. those that leave the

propagation ~k invariant, we can begin to look at the symmetry of the magnetic atoms. The start-
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ing place is to examine the symmetry of the atom under the symmetry operations compatible

with the magnetic structures propagation vector.

The application of a symmetry operation on a vibrating atom in a solid has two distinct

effects:

1. To move the atom, i.e. to change the atom’s position

2. To change the direction of the axial vector that we use to represent the moment of that

atom

The operations of all the symmetry elements of the group on all the atomic positions and all

of the displacement vectors, can be described using a large matrix called the magnetic repre-

sentation, Γmag. We will now explore in detail the action of the symmetry operations separately

on the atomic positions and their atomic moment vectors.

1.5.1 Effects of Symmetry Operations on an Atom position- The Permutation Represen-
tation, Γperm

The first thing that we will look at is how the atomic positions are changed by the symmetry

operations of a space group, G0.

Recap: a crystal appears invariant under all of the symmetry operations of its space group.

However, equivalent atoms can be interchanged, or permuted, under the different symmetry

operations.

If ~ri is the atomic position vector, the operation of a symmetry element, g, on an atomic

position can be symbolically stated as

g(~ri) = ~rj (18)

If we label the atoms a, b, c, etc..., the symmetry operation will permute some of the atomic

labels.
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An example: Take three equivalent positions: a = (0.25 0.5 0), b = (−0.25 − 0.5 0),

c = (0 0 0). Application of the symmetry operation g = C2z to each of these creates the

following positions:

g(a) =

 −1 0 0
0 −1 0
0 0 1


 0.25

0.5
0

 =

 −0.25
−0.5

0

 = b (19)

g(b) =

 −1 0 0
0 −1 0
0 0 1


 −0.25
−0.5

0

 =

 0.25
0.5
0

 = a (20)

g(c) =

 −1 0 0
0 −1 0
0 0 1


 0

0
0

 =

 0
0
0

 = c (21)

If we represent the set of atomic labels by a column matrix, P , this operation can be written

as

g(P ) = P ′ (22)

g

 a
b
c

 =

 b
a
c

 (23)

The way that all the symmetry operations of a group permute the labels of all equivalent

atoms can be represented by a large matrix, called the permutation representation, Γperm ,

whose matrix representative is of order N , where N is the number of equivalent atoms that we

are looking at. Strictly, the permutation representation corresponds to all the different positions

in a crystal, but we can limit ourselves to initial positions in the primitive nuclear cell.

Example: the point group C2 has 2 symmetry operations:the identity, E, and the 2-fold

rotationC2z. The permutation of the three equivalent positions: a = (0.25 0.5 0), b = (−0.25 −

0.5 0), c = (0 0 0) under the symmetry operation E is
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E

 a
b
c

 =

 a
b
c

 (24)

and so the matrix representative, is

ΓEperm(P ) =

 1 0 0
0 1 0
0 0 1


 a
b
c

 (25)

Under C2z the labels permute as

C2z

 a
b
c

 =

 b
a
c

 (26)

and so

ΓC2z
perm(P ) =

 0 1 0
1 0 0
0 0 1


 a
b
c

 (27)

The character of the permutation representation for a symmetry operation, χperm(g) is sim-

ply the number of position labels that are unchanged under its action, e.g. in this case

χperm (C2z) = 1 (28)

χperm (E) = 3 (29)

It is important to note that when a symmetry operation results in an atomic position that is

outside the zeroth cell, a phase factor must be included that relates the generated position to that

in the zeroth cell. This phase is simply given by:

θ = −2π~k · ~τrtn (30)
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where ~τrtn is the translation vector, that relates the position vectors of the original (seed) and

generated atoms: ~rseed = ~rnew + ~τrtn. This translation is applied to phase the Bloch wave of the

generated atom, back to the seed atom in accordance with the k-vector.

1.5.2 Magnetic Moments: (Pseudo) Axial Vectors

An atomic moment is described by an axial vector, for convenience, in the axis system of the

point or space group that we are using. We will always refer to moment components defined

with respect to the crystallographic axes, not Cartesian projections. (Symmetry theory is always

simpler in an axis system matched to the problem, and in this case that is the crystal structure.)

Taking the moment vector of an atom to be ~V = (ma, mb, mc), then the action of a rotational

symmetry element is simply

~V ′ = R~V × det(R) (31)

Where the determinant det(R) is required to describe the current loop type symmetry of an

axial vector, i.e. that is is not reversed by the inversion operation.

If R = C2z, with det(R) = 1 we have

R =

 1̄ 0 0
0 1̄ 0
0 0 1

 (32)

then

~V ′ = (−ma, −mb, mc) (33)

The axial vector representation, Γaxial, describes how the components of a moment vector

are changed by the different symmetry operations. The character for a given symmetry opera-

tion describes what component of the a component is left unchanged, the b component that is
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unchanged, and the c component that is unchanged. Numerically, it is simply the trace (the sum

of the leading diagonal elements) of the rotation matrix of the symmetry operation multiplied

by the determinant of the rotation matrix.

Thus, for the point group C2,

χaxial (E) = (1 + 1 + 1)× 1 = 3 (34)

and

χaxial (C2z) = (−1− 1 + 1)× 1 = −1 (35)

1.5.3 The Magnetic Representation

The magnetic representation, Γvib, describes both the result of the symmetry operation on the

atomic positions and on the axial vectors that describe the atomic moments. As these effects

are independent, the magnetic representation is given by their direct product:

Γmag = Γaxial × Γperm (36)

Or, in terms of the matrices for the representations themselves

Dmag = Daxial ×Dperm (37)

The characters of these representations are related according to:

χmag = χaxial × χperm (38)

14



1.6 Irreducible Representations of the Space Groups
1.6.1 Irreducible Representations Revisited

Recap: Irreducible representations are matrices that map onto the algebra of the space group

symmetry operations. Irreducible representations are of particular significance because they are

the smallest unique blocks out of which all other representations can be made. In other words,

any representation can be written in terms of the different irreducible representations of the

group: the representation can be decomposed into irreducible representations. The dimension-

ality of an irreducible representation is the dimensionality of the matrix representatives of the

representation.

1.6.2 Basis Vectors and Basis Vector Space

Symmetry adapted linear combinations, also called basis vectors, are obtained by projection

from test functions components that are compatible with one row of an irreducible represen-

tation matrix. Only functions that have the same symmetry as the irreducible representations

under all of the different symmetry operations of the group give non-zero results – these are the

symmetry adapted linear combinations.

1.7 Decomposition of the Magnetic Representation into Irreducible Rep-
resentations of Gk

Γmag describes how the atomic moments change under all the different symmetry operations of

a space group. It is reducible and can be written in terms of the irreducible representations of

the space group, i.e. Γmag can be decomposed into the irreducible representations of the space

group Gk. In this case, the magnetic representation for an atomic site can be decomposed into

contributions from the irreducible representations of the little group:
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Γvib =
∑
ν

nνΓν (39)

where nν is the number of times the irreducible representation Γν appears in the vibrations

representation Γvib. nν is given by:

nν =
1

n(Gk)

∑
g∈Gk

χΓmag(g)χΓν (g)∗ (40)

Here, χΓmag(g) is the character of the magnetic representation and χΓν (g)∗ is the complex con-

jugate of the character of the irreducible representation with index ν for element g.

The decomposition of Γmag into the irreducible representations of the little group Gk gives

the number of basis vectors that contribute to Γmag from each irreducible representation, e.g. if

the decomposition reads

Γmag = 1Γ
(1)
1 ⊕ 1Γ

(2)
2 (41)

(Here I am using a notation where the superscript represents the order of the irreducible repre-

sentation and the subscript is its index or label.) We see that Γmag contains irreducible repre-

sentation number 1 (which is of order 1) once, and irreducible representation number 2 (which

is of order 2) once. This means that Γmag contains one basis vector associated with Γ1 and two

associated with Γ2. The ⊕ indicates that the symmetry spaces are joined : this operation is also

called the direct sum.

1.8 Projection of the Basis Vectors for Atomic Moments– Magnetic Struc-
ture Symmetry Types

Calculation of the basis vectors is done using the projection operator technique, which involves

taking a test function and projecting from it the part that transforms according to each of the

irreducible representations. We will use the notation ~ψn as the basis vector that transforms
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according to the µ dimensional representation Γµν , and Dν is the matrix representative of the

irreducible representation with index ν. The test functions that we will use are

~φ1 = (1 0 0) (42)

~φ2 = (0 1 0) (43)

~φ3 = (0 0 1) (44)

The projection process determines the component of the test function that transforms ac-

cording to the irreducible representation that is under investigation. If there is, it gives it (this is

what the basis vector is). If there isn’t, it gives zero. The projection operator formula is:

~ψλαν =
∑
g∈Gk

Dλ∗
ν (g)

∑
i

δi,giRg
~φαdet(Rg) (45)

Explaining each symbol from left to right:

• ~ψλαν is the basis vector projected from the λth row of the νth irreducible representation

using the test vector ~φα

• g ∈ Gk means that the sum is over the symmetry elements that are in Gk

• Dλ∗
ν (g) is the complex conjugate of the element of the matrix representative that is

being examined: it is the λth row of the matrix representative of the νth irreducible rep-

resentation, for symmetry operation g

•
∑
i means that the following summation is over all of the atomic positions that are related

by the symmetry elements of the space group
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• δi,gi is the Kronecker delta and means that effectively the sum is only over the symmetry

elements that move an atom to a position that has the same label

• Rg is the rotational part of the symmetry operation g. (The translational parts are only

required when looking at the effects of the symmetry operation on the atomic positions,

and not on the polar vector which describes the displacement)

• ~φα is our test function.

• det(Rg) is the determinant of the rotation operation Rg

During the projection process we:

1. Chose an irreducible representation

2. Chose a row

for each element of that row we

1. Chose ~φ1 (i.e. α = 1)

2. Project out any components of ~φ1 that correspond to that element of the matrix represen-

tative and note the atomic position generated

3. If the total basis function component that results, ~ψλαν , is non-zero for an atomic position,

we keep it

4. Chose ~φ2 (i.e. α = 2)

5. Project out any components of ~φ2 that correspond to that element of the matrix represen-

tative and note the atomic position generated
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6. If the sum of the basis function components that results for an atomic position is non-zero,

we keep it

7. Chose ~φ3 (i.e. α = 3)

8. Project out any components of ~φ3 that correspond to that element of the matrix represen-

tative and note the atomic position generated

9. If the sum of the basis function components that results for an atomic position is non-zero,

we keep it

This process if repeated for all elements of *one* row and then repeated for the next irre-

ducible representation, etc. Of course, the number of non-zero unique projected components

for a representation is of course the same as calculated using

nν =
1

n(Gk)

∑
g∈Gk

χΓmag(g)χΓν (g)∗ (46)

1.9 Example of Projection of Symmetry Adapted Displacement Vectors
1.9.1 Required information

Space group: Ama2

k vector :(0 0 0)

Calculate the magnetic basis functions for as atom at position X1: (0 0 0)

The symmetry operators in G0 are :

g1 = (x, y, z) (47)

g2 = (−x,−y, z) (48)
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g3 = (x+
1

2
,−y, z) (49)

g4 = (−x+
1

2
, y, z) (50)

1.9.2 How does the propagation vector ~k = (0, 0, 0) change under the symmetry opera-
tions of G0?

(Remember that we only need to consider the rotational part for this)

~kR1 = (0 0 0)

 1 0 0
0 1 0
0 0 1

 (51)

~kR2 = (0 0 0)

 −1 0 0
0 −1 0
0 0 1

 (52)

~kR3 = (0 0 0)

 1 0 0
0 −1 0
0 0 1

 (53)

~kR4 = (0 0 0)

 −1 0 0
0 1 0
0 0 1

 (54)

Under all the symmetry operations ~k is changed into ~k, that is to say that they all leave it

unchanged. Therefore all the symmetry operators are in Gk and Gk = G0.

1.9.3 How does the atomic position X1 : (0 0 0) change under the symmetry operations
of Gk?

Application (of the rotational/translational operations) to position X1 : (0 0 0) gives:

g1X1 = (0 0 0) (55)
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g2X1 = (0 0 0) (56)

g3X1 = (0.5 0 0) (57)

g4X1 = (0.5 0 0) (58)

There are therefore 2 symmetry related positions generated by the application of G0 to position

X1: X1 = (0 0 0) and X2 = (0.5 0 0).

How do these positions (the equivalent positionsof a Wyckoff site) permute under the sym-

metry operations in Gk?

X1 : (0 0 0) X2 : (0.5 0 0)
g1 (0 0 0) (0.5 0 0)
g2 (0 0 0) (-0.5 0 0)
g3 (0.5 0 0) (1 0 0)
g4 (0.5 0 0) (0 0 0)

Table 4: Table showing how the atom positions and labels permute under the symmetry opera-
tions of Gk.

As a crystal structure is made up of unit cells that translate in space, the position (1 0 0) is

related to the seed position (0 0 0). The vector that relates positions generated in a neighouring

cell to that in the zeroth cell gives rise to a translational phase. So, this table can be written:

X1 : (0 0 0) X2 : (0.5 0 0)
g1 (0 0 0) (0.5 0 0) + ~τ = (0.5 0 0);~τ = (0 0 0)
g2 (0 0 0) (−0.5 0 0) + ~τ = (0.5 0 0);~τ = (1 0 0)
g3 (0.5 0 0) (1 0 0) + ~τ = (0 0 0);~τ = (−1 0 0)
g4 (0.5 0 0) (0 0 0) + ~τ = (0 0 0);~τ = (0 0 0)

Table 5: Table showing how the atom positions and labels permute under the symmetry oper-
ations of Gk with some of the translation vectors that return the generated position to the seed
position, ~τ .
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The permutation of the atom labels and the character of the permutation representation in-

volves a phase related to the k-kector and this returning vector, exp(−2πi~k ·~τ), and is therefore:

X1 : (0 0 0) X2 : (0.5 0 0) χperm(gn)
g1 X1 X2 2
g2 X1 X2 . exp(0) 2
g3 X2 X1 . exp(0) 0
g4 X2 X1 . exp(0) 0

Table 6: Table showing how the atom labels permute under the symmetry operations of Gk and
the character of the permutation representation.

1.9.4 What is the character of the axial vector representation, Γaxial?

The character of the axial vector is the trace of the rotational part of the symmetry operators

multiplied by the determinant of the rotation matrix. For all the following operations det(g) =

+1, so the character χ(g) is simply the trace of the rotation matrix :

R1 =

 1 0 0
0 1 0
0 0 1

 (59)

trace R1 = (1 + 1 + 1)× 1 = 3

R2 =

 −1 0 0
0 −1 0
0 0 1

 (60)

trace R2 = (−1− 1 + 1)× 1 = −1

R3 =

 1 0 0
0 −1 0
0 0 1

 (61)

trace R3 = (1− 1 + 1)×−1 = −1

R4 =

 −1 0 0
0 1 0
0 0 1

 (62)
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trace R4 = (−1 + 1 + 1)×−1 = −1

1.9.5 Calculate the decomposition of the magnetic representation into the irreducible
representations of Gk

The first step is to calculate the character of the axial representation, χaxial

g1 g2 g3 g4

χperm(gn) 2 2 0 0
χaxial(gn) 3 -1 -1 -1
χmag(gn) 6 -2 0 0

Table 7: Table showing the characters of the permutation, axial and magnetic representations.

The irreducible representations of Gk are

g1 g2 g3 g4

Γ1 1 1 1 1
Γ2 1 1 -1 -1
Γ3 1 -1 -1 1
Γ4 1 -1 1 -1

Table 8: Table showing the irreducible representations of the little group Gk.

Given

nν =
1

n(Gk)

∑
g∈Gk

χΓmag(g)χΓν (g)∗ (63)

for ν = 1 (i.e. Γ1) we have

n1 = 1/4[1× 6 + 1× (−2) + 1× 0 + 1× 0] = 1/4[4] = 1 (64)

for ν = 2 (i.e. Γ2)

n2 = 1/4[1× 6 + 1× (−2) + (−1)× 0 + (−1)× 0] = 1/4[4] = 1 (65)

for ν = 3 (i.e. Γ3)

n3 = 1/4[1× 6 + (−1)× (−2) + (−1)× 0 + 1× 0] = 1/4[8] = 2 (66)
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for ν = 4 (i.e. Γ4)

n4 = 1/4[1× 6 + (−1)× (−2) + 1× 0 + (−1)× 0] = 1/4[8] = 2 (67)

The decomposition of Γmag into irreducible representations of Gk is therefore

Γmag = 1Γ1 ⊕ 1Γ2 ⊕ 2Γ3 ⊕ 2Γ4 (68)
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1.9.6 Calculate the basis vectors associated with each irreducible representation

Given the equation for the projection operation:

~ψλαν =
∑
g∈Gk

Dλ∗
ν (g)

∑
i

δi,giRg
~φαdet(Rg) (69)

, project out the basis functions associated with the irreducible representations of Gk.

for Γ1 R1: R2: R3: R4:

Rn

 1 0 0
0 1 0
0 0 1


 −1 0 0

0 −1 0
0 0 1


 1 0 0

0 −1 0
0 0 1


 −1 0 0

0 1 0
0 0 1


operate on X1 X1 X1 X2 X2

D1∗
1 1 1 1 1

D1∗
1 ×Rn × det(R)

 1 0 0
0 1 0
0 0 1


 −1 0 0

0 −1 0
0 0 1


 −1 0 0

0 1 0
0 0 −1


 1 0 0

0 −1 0
0 0 −1


~φ1 (1 0 0) (1 0 0) (1 0 0) (1 0 0)

D1∗
1 ×Rn × det(R)× ~φ1 (1 0 0) (−1 0 0) (−1 0 0) (1 0 0)

Sum basis vectors (0 0 0) (0 0 0)
of each atom type

~φ2 (0 1 0) (0 1 0) (0 1 0) (0 1 0)

D1∗
1 ×Rn × det(R)× ~φ2 (0 1 0) (0 − 1 0) (0 1 0) (0 − 1 0)

Sum basis vectors (0 0 0) (0 0 0)
of each atom type

~φ3 (0 0 1) (0 0 1) (0 0 1) (0 0 1)

D1∗
1 ×Rn × det(R)× ~φ3 (0 0 1) (0 0 1) (0 0 − 1) (0 0 − 1)

Sum basis vectors (0 0 2) (0 0 − 2)
of each atom type

Table 9: Table showing the projection of basis vectors from Γ1 for the positions X1 = (0 0 0)
and X2 = (0.5 0 0).

So the non-zero basis vector components on each atom are:

X1 X2

~ψ1 (0 0 2) (0 0 − 2)
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for Γ2 R1: R2: R3: R4:

Rn

 1 0 0
0 1 0
0 0 1


 −1 0 0

0 −1 0
0 0 1


 1 0 0

0 −1 0
0 0 1


 −1 0 0

0 1 0
0 0 1


operate on X1 X1 X1 X2 X2

D1∗
2 1 1 -1 -1

D1∗
2 ×Rn × det(R)

 1 0 0
0 1 0
0 0 1


 −1 0 0

0 −1 0
0 0 1


 1 0 0

0 −1 0
0 0 1


 −1 0 0

0 1 0
0 0 1


~φ1 (1 0 0) (1 0 0) (1 0 0) (1 0 0)

D1∗
2 ×Rn × det(R)× ~φ1 (1 0 0) (−1 0 0) (1 0 0) (−1 0 0)

Sum basis vectors (0 0 0) (0 0 0)
of each atom type

~φ2 (0 1 0) (0 1 0) (0 1 0) (0 1 0)

D1∗
2 ×Rn × det(R)× ~φ2 (0 1 0) (0 − 1 0) (0 − 1 0) (0 1 0)

Sum basis vectors (0 0 0) (0 0 0)
of each atom type

~φ3 (0 0 1) (0 0 1) (0 0 1) (0 0 1)

D1∗
2 ×Rn × det(R)× ~φ3 (0 0 1) (0 0 1) (0 0 1) (0 0 1)

Sum basis vectors (0 0 2) (0 0 2)
of each atom type

Table 10: Table showing the projection of basis vectors from Γ2 for the positions X1 = (0 0 0)
and X2 = (0.5 0 0).

So the non-zero basis vector components on each atom are:

X1 X2

~ψ2 (0 0 2) (0 0 2)

26



for Γ3 R1: R2: R3: R4:

Rn

 1 0 0
0 1 0
0 0 1


 −1 0 0

0 −1 0
0 0 1


 1 0 0

0 −1 0
0 0 1


 −1 0 0

0 1 0
0 0 1


operate on X1 X1 X1 X2 X2

D1∗
3 1 -1 -1 1

D1∗
3 ×Rn × det(R)

 1 0 0
0 1 0
0 0 1


 1 0 0

0 1 0
0 0 −1


 1 0 0

0 −1 0
0 0 1


 1 0 0

0 −1 0
0 0 −1


~φ1 (1 0 0) (1 0 0) (1 0 0) (1 0 0)

D1∗
3 ×Rn × det(R)× ~φ1 (1 0 0) (1 0 0) (1 0 0) (1 0 0)

Sum basis vectors (2 0 0) (2 0 0)
of each atom type

~φ2 (0 1 0) (0 1 0) (0 1 0) (0 1 0)

D1∗
3 ×Rn × det(R)× ~φ2 (0 1 0) (0 1 0) (0 − 1 0) (0 − 1 0)

Sum basis vectors (0 2 0) (0 − 2 0)
of each atom type

~φ3 (0 0 1) (0 0 1) (0 0 1) (0 0 1)

D1∗
3 ×Rn × det(R)× ~φ3 (0 0 1) (0 0 − 1) (0 0 1) (0 0 − 1)

Sum basis vectors (0 0 0) (0 0 0)
of each atom type

Table 11: Table showing the projection of basis vectors from Γ3 for the positions X1 = (0 0 0)
and X2 = (0.5 0 0).

So the non-zero basis vector components on each atom are:

X1 X2

~ψ3 (2 0 0) (2 0 0)
~ψ4 (0 2 0) (0 − 2 0)
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for Γ4 R1: R2: R3: R4:

Rn

 1 0 0
0 1 0
0 0 1


 −1 0 0

0 −1 0
0 0 1


 1 0 0

0 −1 0
0 0 1


 −1 0 0

0 1 0
0 0 1


operate on X1 X1 X1 X2 X2

D1∗
4 1 -1 1 -1

D1∗
4 ×Rn × det(R)

 1 0 0
0 1 0
0 0 1


 1 0 0

0 1 0
0 0 −1


 −1 0 0

0 1 0
0 0 −1


 −1 0 0

0 1 0
0 0 1


~φ1 (1 0 0) (1 0 0) (1 0 0) (1 0 0)

D1∗
4 ×Rn × det(R)× ~φ1 (1 0 0) (1 0 0) (−1 0 0) (−1 0 0)

Sum basis vectors (2 0 0) (−2 0 0)
of each atom type

~φ2 (0 1 0) (0 1 0) (0 1 0) (0 1 0)

D1∗
4 ×Rn × det(R)× ~φ2 (0 1 0) (0 1 0) (0 1 0) (0 1 0)

Sum basis vectors (0 2 0) (0 2 0)
of each atom type

~φ3 (0 0 1) (0 0 1) (0 0 1) (0 0 1)

D1∗
4 ×Rn × det(R)× ~φ3 (0 0 1) (0 0 − 1) (0 0 − 1) (0 0 1)

Sum basis vectors (0 0 0) (0 0 0)
of each atom type

Table 12: Table showing the projection of basis vectors from Γ4 for the positions X1 = (0 0 0)
and X2 = (0.5 0 0).

So the non-zero basis vector components on each atom are:

X1 X2

~ψ5 (2 0 0) (−2 0 0)
~ψ6 (0 2 0) (0 2 0)
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The basis vectors are therefore

X1 X2

Γ1
~ψ1 (0 0 2) (0 0 − 2)

Γ2
~ψ2 (0 0 2) (0 0 2)

Γ3
~ψ3 (2 0 0) (2 0 0)
~ψ4 (0 2 0) (0 − 2 0)

Γ4
~ψ5 (2 0 0) (−2 0 0)
~ψ6 (0 2 0) (0 2 0)

There are 6 basis vectors in agreement with the decomposition equation Γmag = 1Γ1 ⊕

1Γ2 ⊕ 2Γ3 ⊕ 2Γ4, and the number of equivalent positions for this atom (2 positions, each with

3 degrees of freedom = 6 degrees of freedom). Symmetry has now allowed us to classify these

degrees of freedom into SALCs. (Important- symmetry does not reduce the number of degrees

of freedom, it only classifies it.) 3

1.10 The degrees of freedom of a magnetic structure

In general, any linear combination of the basis vectors associated with an irreducible represen-

tation will have the symmetry of that irreducible representation. If this linear combination is

written

~M =
∑
n

Cn ~ψn (70)

that is to say

~M = C1
~ψ1 ⊕ ...⊕ Cn ~ψ2 (71)

3My preference is never to normalise the basis vectors as it their ability to be scaled is an intrinsic aspect of
their application.
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then at any given instant these propagate through the solid according to the wave equation

~Mj = ~Miexp(−2πi~k ·~t) (72)

where ~Mi and ~Mj are the moment vectors from of atoms i and j. Just as the normal modes of

a vibrating molecule are orthogonal, the magnetic structure basis functions of the different IRs

are normal modes and are orthogonal.
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