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Abstract. A considerable challenge is faced by researchers wishing to identify the propaga-
tion vector(s) associated with a magnetic structure or a lattice distortion from powder diffrac-
tion data, due to the severe destruction of information by powder averaging and search algo-
rithms based on extracted peak positions. In this article a new method is introduced that is
based on the points, lines and planes of the Brillouin zone of the crystal structure before the
transition. These correspond to different classifications of the translational symmetry of the
resultant order and of the Bloch wave that is used to describe the magnetic structure or pho-
non mode.
An automated search algorithm for the study of magnetic structures is described based on
reverse-Monte Carlo refinement of moment orientations for a given k vector that markedly
reduces the number of false-positives and allows the straight forward analysis of systems that
contain contributions from several unrelated k vectors.

Introduction
The determination of the propagation vector(s) associated with a magnetic structure or a
lattice distortion from powder diffraction data is a major challenge in powder diffraction, as
much information is destroyed by powder averaging. An additional difficulty arises from the
way that procedures to index the relevant diffraction peaks are decoupled from the nature of
the physical processes that drives the phase transition: indexing is often carried out as a
mathematical problem based on extracted peak positions and the calculation of the positions
of reflections for simple trial cells. Other methods based on the formalism of a propagation
vector, k vector, enable the exploration of both commensurate and incommensurate trial
structures, either following grid searches or non-linear procedures but have difficulties with
systems that involve several k vectors or poor data. [1]

Despite the high symmetry points of the Brillouin zone (BZ) being one of the basic concepts
in solid state physics [2], they have not been systematically applied before to the indexing of



40 European Powder Diffraction Conference, EPDIC 11

magnetic structures and the propagation vectors associated with a displacive crystallographic
phase transition. Their applicability arises from the restriction of magnetic structures and
phonons to following the equation of a plane wave in accordance with Bloch�s theorem. The
k vector then defines the different classes of the translational symmetry of the resultant struc-
ture and in many cases the observed propagation vectors correspond to the different symme-
try points, lines and planes in the Brillouin zone of the crystal structure before the ordering
transition.

In this article we demonstrate how the Brillouin zone can be used to construct trial k vectors,
and introduce a procedure for the determination of the k vector of a magnetic powder diffrac-
tion spectrum based on the reverse Monte-Carlo refinement of suitably located magnetic
moments. Together these techniques enable the characterisation of complex systems, such as
those with several propagation vectors which are not symmetry related, that may otherwise
have been incorrectly characterised by a general point in the Brillouin zone.

The reciprocal lattice
Consider a lattice in direct space defined by the primitive translations a1,a2,a3. The position
vector of any lattice point of that Bravais lattice is given by

Tn1n2n3 = n1a1 + n2a2 + n3a3, (1)

where n1-n3 are integers. The associated reciprocal lattice vectors are given by

b1 = 2π
a2 × a3

a1 ⋅ a2 × a3( )
(2)

b2 = 2π
a3 × a1

a1 ⋅ a2 × a3( )
(3)

b3 = 2π
a1 × a2

a1 ⋅ a2 × a3( )
(4)

and are the basic vectors of the Bravais lattice in reciprocal space, or k space. The reciprocal
lattice may then be defined as the set of wave vectors k that satisfies the equation

, (5)eikT = 1

where T is a real space lattice vector defined in equation (1).

The Brillouin zone
The concept of the Brillouin zones was developed from Bloch�s theory. Ignoring the correla-
tions between electrons, this is equivalent to the �independent particle approximation� of
Hartree-Fock, where every electron has a separate wave function that satisfies the
Schrödinger equation:
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where the potential V has the symmetry of the lattice. Whereas in atoms and molecules the
Eigenvalues of (1) are well separated, in crystalline solids they form a continuous manifold
and must be characterised by continuously varying parameters as well as discrete points. [2]

The allowed solutions of (6) have the form of a Bloch wave:

Ψk (r) = uk (r) exp(ikr) , (7)

where k is a reciprocal vector that may be defined using the basis vectors a1-a3 of the Bravais
lattice. uk(r) is a periodic function with the same periodic properties as V(r). The solution
ψk(r) has the form of a plane wave that is modulated by the periodic function uk(r). Moving
away from electronic wavefunctions, per se, magnetic structures or phonons are also the
Eigenfuncitons of periodic Hamiltonians and are characterised by a sum over different Bloch
waves

Ψk (ri) = ψk
α (r j ) exp(ikt ij )

k,α
∑ , (8)

where tij=rj-ri , k is the wavevector, and α is the index of the Bloch wave. [3-5]

The first BZ then defines a set of unique k vectors that satisfy (7) and cannot be made shorter
by adding translation vectors of the reciprocal lattice. The different possible k vectors of the
BZ may then be characterised into different points, lines and planes based on their small
representations of the group of the wave vector, and the symmetry elements that leave the k
vector invariant. [2] If the wave vector lies in a general position, the group of the wave vec-
tor will contain only the identity operation. For other values, the group of k contains more
than the identity, for example in a tetragonal crystal where the k vector lies along the four-
fold axis.

Application of Brillouin zone indexing to magnetic powder
diffraction
The method is based on making the refinement process as physical as possible in order to
counter the loss of information from powder averaging. Introducing physics at even a basic
level greatly reduces the parameter space to be searched and makes tractable the analysis of
systems that cannot be achieved by other methods, and follows the philosophy that we de-
veloped of refining magnetic structures in terms of the mixing coefficients of basis vectors in
SARAh[6]. When applied to magnetic structures there are two main features of this process:
the generation of the trial k vectors following the symmetry points of the Brillouin zone, and
their rigorous testing using moment vectors and a reverse-Monte Carlo-Rietveld algorithm.
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The technique was originally developed for the analysis of the magnetic scattering in the
frustrated magnets β-Mn[7] and gadolinium gallium garnet (GGG) [8], as the competition
between the magnetic interactions make the k vector impossible to guess, without extremely
difficult theoretical calculations. Typically, such calculations are not possible as the magnetic
structure provides the necessary starting information.

Generation of k vectors
There are several conventions that are used to define the high symmetry points, lines and
planes of the Brillouin zone. For simplicity we use that of Kovalev [9] as it allows direct
translation of the observed ordering wavevector to the representational analysis calculations
of the basis vectors of the different possible magnetic structures (a technique that we have
applied to several systems, including Gd2Sn2O7 [10] and CuB2O4 [11]). The search procedure
is based on trying the high symmetry points, then the lines and then the planes. This search
order prevents the true symmetry from being misunderstood when the high symmetry points
are coincident with lower symmetry lines.

There are typically only a few commensurate symmetry points and these are searched se-
quentially. If the diffraction spectrum cannot be fitted, grid searches can be used following
the lines and the planes of the BZ. It should be notes that it is possible for �symmetric� k
vectors to occur within the degrees of freedom allowed for a given line or plane, by this we
mean the presence of commensurate or related components rather the defined high symmetry
points, and the restriction of possible planes may be appropriate if the components of the
determined k vector from a grid search are close to a particular value or relationship.

The generation of the k vectors based on the BZ and subsequent conversion to the conven-
tional unit cell chosen for the crystal structure also prevents mistakes. Firstly, the special
nature of particular k vectors becomes apparent. Following this, the nature of an ordering
wave vector, and its degrees of freedom become recognised as important physical parameters
that distinguish a simple k vector based on a symmetry point from a locked-in k vector
(based on an incommensurate line or plane in the BZ). The conversion to the conventional
direct space cell, also prevents mistakes over the limits of possible k vectors that are frequent
in centred cells, as the upper limit on the k vector along particular directions may be greater
than unity.

Trialling of a given k vector
In order to reduce the susceptibility to false-positives that is intrinsic to conventional k vector
search algorithms, the trialling of a given k vector is based on the physical scattering process.
The orientations of moments that are located at the crystallographic sites are refined against
the experimental data using reverse-Monte Carlo (RMC) techniques. It is important to note
that intensities are not extracted, but the full profile is used. This technique was first devel-
oped by us and released in SARAh [6] and prevents information loss due to extraction of
intensities.
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The number of RMC cycles that are required depends on the precise problem under investi-
gation, though 50 -100 are typically enough to determine whether a k vector is able to fit the
observed diffraction pattern.

Systems with several unrelated propagation vectors
One of the benefits of this methodology is that magnetic intensity will only be calculated at
d-spacings suitable for moments at a given set of positions, with a particular k-vector. This
creates a robust refinement strategy that can cope easily with difficult systems, such as those
that contain several unrelated propagation vectors. Traditional methods, based on d-spacings
alone do not discriminate the contributions of the different phases to the observed diffraction
spectrum. In many cases the loss of information due to powder averaging and the use of only
reflection positions makes the separation of different contributions untenable.

Using this more physical method, the presence of several unrelated propagation vectors be-
comes apparent and is signalled by the ability of a particular k vector to fit well a subset of
the magnetic diffraction peaks and not others. An additional phase can then be introduced
and used to determine the k vector of the next set of unfitted peaks. This procedure may be
repeated as many times as required, and we have ourselves used this process to determine the
propagation vectors of the magnetic field-induced ordering of the frustrated magnet GGG,
where 2 commensurate and 1 incommensurate propagation vectors are simultaneously ob-
served [8].

Systems with magnetic or non-magnetic impurity phases
Similarly, a dataset that has a small subset of peaks that cannot be refined may possess an
impurity phase.1 It should be remembered that with neutron scattering it is possible that
magnetic impurity peaks may only be seen at low temperature, as the magnetic scattering
may be stronger than the nuclear, depending on the details of the structure factors involved.

Brillouin zone indexing and k vector searches with SARAh
In the program SARAh the above procedure is implemented though a metaprogram structure
with the Rietveld refinement program FullProf (FP) [12]. SARAh sets up the magnetic phase
in the orientation matrix format based on the nuclear phase. The user may then automatically
go through the different points, lines and planes of the BZ with SARAh automatically editing
the FP input (pcr) file, launching the FP refinements, and performing RMC refinement of the
moment orientations. The values of the k vector with the best fits, as characterised by the
Rietveld χ2, are then listed. Particular k vectors chosen by the user may be automatically
substituted into the FP input file and tested manually. Commensurate and incommensurate k
vectors can be determined in this manner as SARAh automatically makes all relevant
changes to the FP input file. Additional phases to describe additional k vectors can be added
automatically as required.

1 The observation of a small set of peaks suggests that untested propagation vectors, such as those missed in a
general grid search of the Brillouin zone are not involved as these low symmetry k vectors typically have many
reflections.
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