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PREFACE

This Technical Report represents a rough set of notes written in the process

of giving a series of lectrues on group theory at M. I. T. during the spring term of

1955. These lectures were attended mainly by members of the Solid-State and Molecu-

lar Theory Group and the applications treated in this Report were chosen to be in line

with the interests of that group.

There are very few references in the report even though I have used books

and articles in the preparation of the notes. I found the following particularly helpful:

E. Wigner, Gruppentheorie (Vieweg, Braunshweig, 1931).

This includes the elementary theory of groups as

well as an excellent account of representation theory. Many

applications of group theory to quantum mechanics are included

in this book.

A. Speiser, Theorie der Gruppen von Endlicher Ordnung (Julius
Springer,-e rin, )27).

An excellent and readable account of the theory of

groups and their representations. More thorough than the last

reference, but without applications to quantum mechanics.

Eyring, Walter and Kimball, Quantum Chemistry (John Wiley
and Sons, Inc., New York, 19T7J.

This book contains a brief account of group and

representation theory. It is particularly useful because of the

number of character tables in the appendices of the book.

E. Corson, Perturbation Methods in the Quantum Mechanics of

n-Electron Systems (BIackT-, London-e951). -

This book gives a rather complete treatment of the

Dirac vector model.

J. J. Burckhardt, Die Bewegungsgruppen der Kristallographie

(Birkhaii-ir, Basel, 1947).

A complete treatment of space groups in two and

three dimensions including an enumeration of these groups, but

without a discussion of the irreducible representations of these

groups.
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F. Seitz, Z. Krist. 88, 433 (1934); 90, 289 (1935); 91, 336
(1935); 94, 100 (1936).

This series of four papers gives an algebraic

treatment of space groups in three dimensions and a complete

enumeration of these groups.

F. Seitz, Ann. Math. 37, 17 (1936).

This is the pioneer work on the irreducible repre-

sentations of space groups.

Bouckaert, Smoluchowski, and Wigner, Phys. Rev. 50, 58 (1936).

Application of the theory of Seitz to the face-centered

body-centered, and simple-cubic structures.

Further references may be obtained from these articles and books.

I also wish to express my gratitude to Professor J. C. Slater and to the

members of the Solid-State and Molecular Theory Group for their interest and en-

couragement in preparing this Technical Report.

George F. Koster

Cambridge, Mass.
November, 1955
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Chapter I

GENERAL PROPERTIES OF GROUPS

1. The Group Postulates and the Multiplication Table

A group is a set of distinct elements A, B, C, ... for which an operation

of combining is defined, which we shall call multiplication, and which has the follow-

ing properties:

(a) The product of two elements A and B of the set is itself a V

member of the set.

(b) The associative law of multiplication holds for products of
elements of the set. This means that for any three ele-
ments of the set A, B, and C

(AB)C A (BC).

(c) The set must contain an element E, called the identity, such
that for any element A of

AE = EA = A.

(d) For every element A of the group there must exist an ele-
ment called A-I which is the inverse of A. This means
that for every A there must exist and element A-I in
the group such that*

A-IA = E

The number of elements in is called the order of the group. If the number of ele-

ments in is finite, the group is called a finite group.

We notice that among the group postulates there is none demanding the com-

muting of elements of the group. Thus the order of the elements in a product is sig-

nificant and, in general, AB BA. If the group is such that AB = BA for all ele-

ments A and B in the group, then the group is called Abeleian.

The properties of a group are completely determined if the product of any

pair of elements is known. This information about a group is conveniently given in

terms of a table which shows the products of pairs of

A B elements and is known as the group multiplication table.

E E A B C This table has the form of Fig. 1-1. The left-hand
A A A7 AB AC column lists the elements of the group as does the upper
B BIBAB BC row. The boxes contain the ordered products of an ele-

C C ICA CB C ment of the left-hand column and the upper row in that

order. The first thing we must show is that in any row

of the multiplication table every element of the group
occurs once and only once. This is summed up in the

Fig. 1-1 first theorem.

A group multiplication table

It may be noted here that the inverse of the product of elements is the product of the
inverses taken in reverse order. Thus (ABC) - = C 1 B 1 A- since C 1

B- 1 A-1 ABC = E. -1-



(GENERAL PROPERTIES OF GROUPS)

Theorem 1: For a group iof order g with elements E = A 1

A 2 , A 3 ... Ag, the set of productsAnE, AnA ... AnAg,

where A n is an arbitrary member of the group, contains every

element of the group once and only once.

Proof: Let us see if an element A is contained in this collection. If we can find anm
element of the group, Ar, such that A A = A , the first part of the theorem will bern r m
proved. Let us multiply both sides of the equation by A l1 We find that A =A -

n r n
A m . Since this product is also a member of the group we have found the desired Ar .
We now show that a given element appears only once in the collection of elements. If

the same element appeared twice, we would have AnA A A. By multiplying
-1 nr =nS'

through from the left by A , we find that A = A which means that A and A weren r s r s
not distinct. The same theorem can, of course, be proved for the collection EA

pn
'A2 An' A 3 An , ... where we have multiplied through from the right by the element An.
Having proved this theorem we have shown that multiplying all elements of the group

by any given element of the group will cause the products to run over all the elements

of the group.

In order that we may have an illustration of a group and its associated mul-
tiplication table, let us consider the equilateral triangle and consider all operations

which send this triangle into itself. The equilateral triangle is illustrated in Fig. 1-2.

4
1y

• I

1 x

3 __2 -

Fig. 1-2
The group C 3 vi

The operations which send this figure into itself are given below.

-
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(1. THE GROUP POSTULATES AND THE MULTIPLICATION TABLE)

E: the identity operation

C3 rotation clockwise through 120 °0 about the center of the triangle
c 3 : rotation clockwise through 20 ° about the center of the tinl

2
C2 rotation clockwise through 240 0 about the center of the triangle

-1: reflection through the y axis

T2: reflection through a line passing through the center of the trianglelying 300 below the x axis (passing through the point 2 as the

figure stands)

a3: reflection through a line passing through the center of the triangle
and lying 300 below the negative x axis (passing through the
point 3 as the figure stands).

These operations are considered to move the equilateral triangle and to be defined

with respect to the x and y axes which are fixed in space. Let us consider a sequence

of two operations and see what the result is. Consider, for example, the operation

T 1 followed by the operation a-" This we shall write as (To-. The first operation

appears on the right in the product and the second on the left. The first operation1

sends the triangle into /\ , this when followed by the second operation T2' sends
2 2-3

the triangle into /\ . This is the same result we would have obtained by using
1- 3 2

directly the operation C 3 . In a similar way, we can find the products of all pairs

of operations which we have listed. We present these results in the form of a multi-

plication table which we give in Fig. 1-3.

From this table we can check the group
E I 3 T I (2o( 3  postulates to see if this set of operations forms a

E E C 3 1C3 2 3 group. It is clear, from the table, that the product

C 3 Cof any pair of operations is once again an operation• 2
C3 C 3 C 3  E Ta3 - 1  T 2  of the set. These operations are associative. The

2 2 operation which leaves the triangle unmoved is the
C3 C3 E C3 o-3 -1 identity operation for the group. Inspection of the

- 1 - 1 0" 2 3 E C 3 C 3
2  multiplication table also shows us that an inverse ex-

'  E C ists for every element of the group. Thus
a2  3- 2  L 3 1 3  3 1

3 C C EE - E- = I
T -1 2 -'I

1 3 1 C3 2 -2  = -z
Fig. 1-3 (C3 2)  = 3 3-l = 3

Group multiplication table for
the group C3v.

We can therefore conclude that the set of operations which we have listed forms a

-3-



(GENERAL PROPERTIES OF GROUPS)

group. We note that this group is not Abelian since all elements do not commute. As

an example we note that a-Zl = C3 while Tz C 3 . The result of Theorem 1 can

also be checked from the group multiplication table. We notice that every element of

the group occurs once and only once in a given row or column of the group multiplica-

tion table. The group of operations which we have described here is generally known

as the group C 3v and is the group which leaves the ammonia molecule (NH 3 ) invariant.

As another example of a group, we shall consider the nurfbers 1, -1, i, -i

and consider all possible products of these numbers. In this case the multiplication is

just the ordinary multiplication of complex numbers which is both associative and

commutative. The group multiplication table for this group would be:

Once again we see that the product of any two elements is a

1 -1 i -i member of the set. The number 1 serves as the identity element

-- ment. It is clear from the multiplication table that the in-1 -1 1 -i

verse of every element exists. This set of numbers, there-

-l -l 1 -j i fore, forms a group under the ordinary multiplication of

numbers. As we have mentioned the multiplication of com-i i -1 -l 1
plex numbers is commutative and this means that this group

-i 1 - is Abelian.

2. Subgroups, Cosets and Classes

Any collection of elements of a group which themselves obey the group postu-

lates is called a subgroup of the original group. Let *be a subgroup of order h of a

group of order g. We shall denote the elements of )>by B 1 = E, B 2, B B

and the elements of byA 1 = E, A2 , A 3 , ... A We then define the collection of

elements ) Ak = B1Ak' B2 Ak' '' BhAk (where Ak is not inV-) as the right coset of
)V with respect to Ak. (We can in a similar way define left cosets by multiplying from

the left by Ak. ) This right coset of W-is clearly not a group. If it were, it would con-

tain the identity element, E, which in turn would mean that for some element of ,

say Br , B A E or A B , which violates the rule thatAk is not in .. We
r rk = k =rk

can go further and show that this coset contains no element in common with ). If it

did contain an element, Br, of * then for some element, Bs, of N we would have

BsA k = B r . This in turn means thatA k = Br B s . Since both B andB s- are in

74 this implies that Ak is in )1-. This again violates the definition of a coset. We can

go still further and show any two cosets either contain the same elements or have no

element in common. If the two cosets are * A k and W.4A m and they were to contain

an element in common, we would have B A = BA m orAkAm Br-Bs FromI r k k r s

this we conclude that AkAm 1 is contained in . If this is true, the collection of ele-

ments A AkAm 1 is identical with 4' except possibly for order. This means that

kAkAm - 1 A m which is identical with VA k is, except for order, identical with

-4-



(2. SUBGROUPS, COSETS AND CLASSES)

Thus the two cosets X Ak and kAm are completely identical if they have even one
element in common. Now let us consider the collection, say n - 1 in number, of dis-

tinct cosets. These in addition to ), completely exhaust the group for every element

of the group is in either )- or one of the cosets. (It is clear that every element of the

group is in one of the cosets since B1Ak = A k belongs to one of the cosets for any

Ak in .) From this we can see that g hn. In other words, the order of any sub-

group is a divisor of the order of the group.

As an example of a subgroup of a finite group consider the collection of

all powers of a given element A of

0 2 mn
A =E, A, A , ... AM ,... A,...

All these are elements of the group . Since this group is finite, only a finite num-

ber of different elements of the group can appear in this sequence. Let n + 1 be the
th

first power for which an element is the same as some earlier power, say the m

Then we have that A n +  = A m . We can show that m must be 1. If it were not, we

would have that A n = A m  1 which contradicts the assumption that n + 1 was the first

power for which an element was identical with a preceding element. Therefore

An+l = A from which it follows that A n = E, andA n + k = A k . From this we see

that the elements which appear in this series of powers of A are distinct and then,

after one of the elements is equal to the identity element, the elements repeat starting

with A in the same order. The first power of an element which is equal to the iden-
2tity element is called the order of the element. The collection of elements A, A , ...

An = E 'forms a subgroup of the original group . It is easy to show that this collec-

tion of elements satisfies the group postulates and in addition forms an Abelian sub-

group of the original group. (Any group which is formed out of powers of a given ele-

ment is called a cyclic group. ) From this argument we see that, since the order of

the subgroup formed from powers of an element is equal to the order of the element,

that the order of the elements of a group are all divisors of the order of the group

To illustrate the concepts of subgroups and cosets let us consider the sub-

groups of C 3v* From the multiplication table it is easy to see that the collection

{E, C 3 , C 3 1} forms a subgroup of the original group. This is a subgroup formed

from the powers of the group element C 3 which is an element of order 3. In addition

E and -1 form a subgroup as do E and T., and E and T3. There can be no subgroups

of higher order since three is the largest divisor of six. With respect to the subgroup

f E, C3, C 3 2} we can find the right cosets of this subgroup. Let us multiply this

subgroup from the right by a-. We obtain (from the group multiplication table) the

elements Tl , r2, T 3. This in addition to the original subgroup completely exhaust the

group. Multiplication of the subgroup from the right with a- or with T 3 will merely

-5-



(GENERAL PROPERTIES OF GROUPS)

reproduce (except for order) the right coset we have written above. Thus the group

C 3 v can be decomposed as into its right cosets as follows:

{E, C~ C3 J 1  2

Similarly, if we were to decompose the group C 3 v into right cosets with respect to the

subgroup E, we would obtain:

fE, r}{ 3  }{ 3  }

If X is any element of a group ,then X 1 A X is called the conjugate of

A with respect to X. For any subgroup W of 9, we can define the collection of ele-

ments X 4X. It is simple to show that this collection of elements also forms a

group which is called the subgroup conjugate to - with respect to X are the same as

)* for all X in then it is said to be an invariant self conjugate, or normal sub-

group of j (We notice that this does not mean that for a given element B of3 _-that

X1 BX = B, it only means that the collection X 1 YI X is identical with the collec-

tion N even though the order of the elements in the conjugate subgroup may be differ-

ent. ) For invariant subgroups it is clear that the right cosets are the same as the

corresponding left cosets. X -1 _ X = -implies that -4X = X b.

If a group 9 of order g is decomposed into cosets with respect to an invari-

ant subgroup of order h, then the elements of the group can be collected in the

following way

, A A , Af-

hn = g

Here Ak(k = 2, 3, ... n) are the elements of which generate distinct cosets. For

this decomposition, the original invariant subgroup, #-, and the cosets, can be con-

sidered as entities which form the elements of an abstract group. This is called the

factor group of the invariant subgroup and is denoted by /-. This is a group of

order n. To check that this is a group, let us see if the cosets together with the sub-

group N satisfy the group postulates. First, we must show that the product of two

cosets is itself one of the cosets or . () Ak)(Y-Am) , because right cosets are
the same as left cosets, is the same as #A A mJ* which in turn is the same as

A A . Since *- is a group this yields WAkA which is again one of tie cosets

or ,. The associative law of multiplication holds since it holds for the elements of

the group . The subgroup Y considered as an abstract group element serves as the

-6-



(Z. SUBGROUPS, COSETS AND CLASSES)

identity element for the factor group since -WAk = /A )Ak = tAk. The

inverse of an element Ak can be found from the requirement )VAk Am = .

Taking A m as Ak  finds the inverse of - A m . We have, therefore, shown that the
invariant subgroup and the cosets of this subgroup when considered as entities form

a group.

Having defined an invariant subgroup, we may define another property of

groups which is useful in some applications of group theory. Let us imagine that we

have found the largest invariant subgroup, _ , of i . We might then find the largest

invariant subgroup, , I.2 of ,{/ / . and carry this process along until we have as the final

invariant subgroup, the identity element. This series : : : ... : = E is

called the composition series for the group.

We might notice in passing that the subgroup {E, C 3 , C 3
2J forms an invari-

ant subgroup of the group C 3 v" From the group multiplication table it is a simple

matter to check that if we let # denote this subgroup

E E1 1E
C 3 C 3  )- =

The elements of the factor group would then be the coset 0'l' 0-, o- and the sub-
2 f3

group E, C 3, C 3  . The factor group C v/) is a group of order 2. We have al-

ready seen that the subgroup {E, C 3, C 3
2

} is the largest subgroup of C 3 v. Since

it is in addition the largest invariant subgroup of C 3 v and it has no invariant subgroups

outside of the identity element we can write out the composition series for the group

C 3 v* In this case the composition series will be

C v: jE, C, C' :E

The concept of conjugate elements is also useful in breaking up a group in

another way than we have previously stated. We define all elements conjugate to a

given element in a group i as belonging to the same class. Thus if we take an ele-

ment A of a group and form

E - I AE =A, A2 I AA' .... AA

the elements appearing in this series are said to belong to the same class. We might

notice that two elements conjugate to the same element are conjugate to each other.

Thus, if B X-A X and C =Y-1A Y, then A YCY - and B YA Y X =

-7-



(GENERAL PROPERTIES OF GROUPS)

(Y-1 X) ~ A(Y- X). From this, we see that an alternative way of defining a class is
that collection of elements conjugate to each other. In this way, it can easily be seen

that a group can be divided into disjoint classes which will completely exhaust the

group. (One class of every group will consist of the identity element which is always

in a class by itself. This is clear since X E X = E for all X in a group.)

As an example of the decomposition of a group into classes consider an Abe-

lian group. If we fix our attention on an element A of this group and form X AX for

all X in the group, we notice that, since all elements of an Abelian group commute,

X IA X = X- X A = A. This means that for an Abelian group every element is in a

class by itself.

We could also divide the group C 3 v into classes. The identity element forms

4I a class by itself as we have mentioned above. Let us find all elements conjugate to

C 3 .

E - C3 E = C3  -I 1 C3 0-1  C 3

, C3  3 C3 3  r2  C3 0-2  C 3

C 3  C 3 C 3 = C3  - C3 0'3 C3

2Thus we see that the elements C 3 and C 3 form a class. We can now find the elements

conjugate to o-1

E I E =l Ti i 1.I = a'

-i -i
C 3  1 C3 = r3 .2 '1 '2 '3

"o-1 2= - 3l
LC 3J 2] (r 3 03 T 1 0T3  '.2

We have now exhausted the group. C 3 v is therefore divided into classes in the follow-

ing way:

{EJ. { 3 1 C 3 2} {0.l1 (r2' 0.3}

We notice that in this division into classes geometrically similar operations fall into

the same class. More precisely if two elements are in the same class we can find a

new coordinate system in which the one operation is replaced by the other. Thus if

we were to choose our coordinate system so that the x axis pointed in the opposite
2

direction the operation C 3 in the old coordinate system would be the same as the

operation C 3 in the new coordinate system. With this geometric insight it does not

-8-



(3. ISOMORPHISMS AND HOMOMORPHISMS)

surprise us to learn that operations in the same class have the same order. If A' =
-1 thnX AX and A are in the same class and A is an element of the n order, then A n 

=

(X-1 AX)n = (X- 1 AX)(X - 1 AX) ... (X -1 AX) = X -1 AnN = X -1 EX = E.

3. Isomorphisms and Homomorphisms

Consider a group of order g with elements E, A, B; ... and another

group ' ' of the same order with elements E', A', B' .... These two groups are

said to be isomorphic if the elements of one can be put into one to one correspondence

with the elements of the other and if, in addition, A' corresponds to A and B' corres-

ponds to B then AB corresponds to A'B'. ((AB)' = A'B'). This property of isomorphism

means that the multiplication tables of the two groups can be put into a one to one cor-

respondence. Two groups which are isomorphic have the same properties and struc-

ture and differ only in the labeling of the elements. Isomorphic groups can be thought

of as corresponding to the same abstract group.

Sometimes it is possible to make each element of a group correspond to

one and only one element of another group ' and in addition make the product of ele-

ments of i correspond to the products of the corresponding elements of it. In this

case, the groups are said to be homomorphic. In this case more than one element of

j may correspond to one element of q-'. In other words, the correspondence is not

one to one and the group 9 must have a larger order than 9'. If the orders are the

same and the groups are homomorphic, then they are isomorphic. If a group j is

homomorphic to a group T', then the element E' of ' which corresponds to the iden-

tity element E of is the identity element of T'. For groups which are homomor-

phic we have (XE)'= (EX)' = X' = X'E' = E'X'. The only element of i' which has
this property is the identity element. Therefore, we can conclude that E' is the iden-

tity element for the group it. In a similar manner, we can conclude that the inverse

of an element X of corresponds to the inverse of the element X' of i.

We can learn still more about this relation of homomorphism. If is homo-

morphic to ', then the collection of elements of which correspond to the identity

element, E', of ' form an invariant subgroup of . Let those elements which cor-

respond to E' be denoted by E, E 2 , E 3 ' ... En' Since (EiE.)' = E'E' = E' the product

of any pair of elements of the set belongs to the set. The identity element is in the

set. If E. is in the set E. is also in the set. This is true since from (E.E )' E,
E 1 1 -

we conclude that E'(E. )' E'. This in turn means that (E. - )' = E' or that E. is

a member of the set. Thus we conclude that the set E, E 2, ... En forms a group.

Let us call this group j-. If we can show that X-1 E.X belongs to for any E inL

and for any X in 9, we will have shown that we have an invariant subgroup. We know

that.(X- 1 EiX)' = (X-1)' E'X' = x1- 1 E'X' = E'. Thus X 1 E belongs to $', and

therefore is an invariant subgroup.

-9-



(GENERAL PROPERTIES OF GROUPS)

More can be shown. We can show that the factor group /7(is isomorphic

with the group '. Let us first note that the elements of q which correspond to the

same element A' of ' belong to the same coset of F with respect to )/. Thus if

Al, A2 , ... A correspond to A', (A. A) = Ai = E . From this we conclude

that Ai- 1 A = E , where E k is some member ofk)V. Thus the cosets A. .and At E k

4. = A i are identical and A. and Ai lie in the same coset. If we now show that if

two elements of lie in the same coset they correspond to the same element of the

group we will have shown that there is a one to one correspondence between theelements of the factor group /tand the group ' If two elements A. and A. lie

in the same coset then AiE k  A for some Ek in Therefore, we have that (A)' =

A' = A.'E' = A.' A.'. If we show in addition that the product of two elements of

the factor group corresponds to the product of the corresponding elements of the group
" ) we will have shown that the group 'is isomorphic with the factor group

This is clearly so since, if A)V-B N-= CY, then AEkBEm = CEn or A'E'B'E' = CE'

which means that A'B' = C'. From these arguments we also conclude that the order

of the group 2' must be a divisor of the order of the group 7. It is also clear from

the preceding discussion that a group is homomorphic to its own factor group.

I, We mentioned earlier that any group which has the same multiplication table

and whose elements can be put into one to one correspondence with a given group is

isomorphic with the given group. We shall illustrate this by giving two groups isomor-

phic with the group C 3 v which we have defined above.

Consider the numbers one through three: 1, 2, 3. Any other arrangement

of these numbers, for example, 2, 1, 3 is called a permutation of the numbers 1

through 3. The operation which rearranges the numbers is called a permutation. This

permutation can be specified by stating which number 1 goes into, which number 2

goes into and which number 3 goes into. The way a permutation is denoted is
aa . The meaning of this symbol is that 1 is replaced by al, 2 is replaced

by a2 and 3 is replaced by a 3 , where a 1 , a 2 , and a3 are three distinct numbers from

1 through 3. The collection of all operations of this type is called a symmetric group

of order 3 and has 3! = 6 members. The fact that these elements form a group can
/1 23 (a1 a2 a)\

easily be verified; the inverse of being 2 The six permuta-
: 1a aZ a3

tions in this group can be written

1. 1 2 3 ( 1 2 3 3 1 2

2 3 3211 E2 3) ~ 2Q 31) P3( 1

4P5 =-P63 2 3 2 11

-10-



(3. ISOMORPHISMS AND HOMOMORPHISMS)

The product of two permutations PnFm means that the permutation Pm is followed by

the permutation Pn' (Many authors use the opposite convention. ) From this definition

we can find, for example, P 5 P 6

/12 3\(123) = (1 2 3)
5P6 C P23 2 1 3 2 3 1

What we have done in performing this multiplication is to replace I by 2 from P 6 and

then replace 2 by 2 from P5 . We replace 2 by 1 from P 6 and replace 1 by 3 from P 5 .

We replace 3 by 3 from P 6 and replace 3 by 1 from P 5 and then identify the resulting

arrangement with the permutation P 2. By carrying out all possible multiplications of

pairs, it can readily be checked that the set of six permutations form a group and the

multiplication table can be constructed. If the identification with the group C is
3v

made as follows

E . P P4

C3 - P2 (2 *OP5

C 3
2 -WP 3  (3 4- P6

It will be found that the multiplication table for the two groups is the same. The

groups are therefore isomorphic and correspond to the same abstract group.

Another group isomorphic with C 3 v can be found as follows. Imagine the

collection of matrices:

M 0=( 1) M2= ( M3 =

We now take all possible products of two matrices. For example M 5 M 6

0-11

2

We no-aealpsil pout ftomice.FrI-mleM



(GENERAL PROPERTIES OF GROUPS)

Therefore, M 5 M6 = M 2 . Similarly, in taking all possible products of pairs of elements,

second group postulate is satisfied because we are using matrix multiplication. This

group of elements contains the identity element, namely: M 1. The multiplication of

all pairs would also confirm the existence of the inverse of every element of the set.

Thus it is seen that this set of six matrices form a group. If the one to one correspond-

ence

E 4---M 1  -.1 -WM 4

tC3  M2 4--M 5

C32 - M 3  o3 "--M6

is made then it can easily be checked that this collection of matrices forms a group
isomorphic with the group C 3 v of the permutation group of order 3! mentioned in the

last paragraph.

With this we conclude our general discussion of groups and proceed in the

next chapter to a discussion of representation theory. If something more complete

than this sketchy treatment of groups is desired the reader is directed to "Die Theorie

der Gruppen von Endlicher Ordnung" by Andreas Speiser.

''I

~-12-



Chapter II

REPRESENTATIONS OF A GROUP

1. Definition and General Properties of a Representation

The concept of a representation of a group forms the basis for much of the

application of group theory. By a representation of a group we mean any set of ele-

ments which can be put in correspondence to the elements of a group and which have

the same multiplication table. A representation is homomorphic to the group that it

represents. If the homomorphism is an isomorphism, the representation is said to

be true or faithful. It is clear from this definition that any representation of a factor

group is a representation of the given group. We merely assign to the element repre-

senting a given coset all the elements in the coset and then we have the representation

of the total group. In this case the representation is not true. In what follows we

shall follow closely "Gruppentheorie und ihre Anwendung auf die Quantenmechanik der

Atomspektren" by Eugene Wigner (Friedr. Vieweg und Sohn Akt. -Ges., Braunschweig,

1931).

A useful form of representation is the representation of a group through

square matrices. To each element of the group, A, we have a corresponding matrix*

r(A). These matrices are required to multiply according to the group multiplication

table. Thus if AB = C then P(A) P(B) = r(C). Here we use the ordinary laws of a

matrix multiplication. If r(A)i j (i, j = 1 . .. n) are the elements of the matrix r(A)
(n is called the dimension of the representation) then by the element of the product

r(A) r(B), we mean

n
r~c)]km = [rA) r(B) = F(A)ki r(B)im (2-1)

We shall restrict ourselves to non singular matrices. (Those which possess an inverse

are called non singular. ) In this case, the matrix representing the identity operation

must be the unit matrix

r(E)i j  - 6 ij (2-2)

The matrix representing the inverse of an operation A will be the inverse of the ma-

trix representation A. That is

r(A - ) [ -rAT (2-3)

We denote matrices by bold faced letters: r(A), A , B and the elements of these
matrices by r(A)i j , Aij, Bij.

-13-



(REPRESENTATIONS OF A GROUP)

One can generate many representations of a group from one representation

by letting all the matrices in the representation undergo the same similarity transfor-

mation. Thus we note that if S is a non singular matrix and we define r '(A) =

r(A) S for all A in the group, then the multiplication of the primed matrices will

follow the same multiplication table that the unprimed ones do. Thus if

r(A) r (B) r(C)

then

r'(A) r(B) = S -1 P(A)S s - 1 'r(B)s

= 8- r(A) P(B)S = S- r(C)s

= r,(c)

Representations related in this way, by a similarity transformation, are called equiva-

lent representations.

Let us illustrate a representation of a group by finding a representation of

the group C 3v. Imagine that we had two vectors pointing from the center of the tri-

angle, in Fig. l-Z, to the corners l and Z. (See Fig. Z-l) Let us denote these vectors
by a and a. These vectors will be sent, by operations of the group C 3 v into some

rotated set of vectors. The rotated vectors can, in turn, be expressed as a linear

'4 #y

a

1

I -la i

j: Fig. 2- 1



(I. DEFINITION AND GENERAL PROPERTIES OF A REPRESENTATION)

combination of the original vectors. Thus if R is some operation of the group C3v, we

can write

I- (R).. . i 1, 2 (2-4)

Here Ra. is the vector a after the operation R has been performed on it. If this opera-

tion R is followed by another operation R'

z z='R r(R') j r(R)j i a (Z-5)

Sj~l k=l R~k k

Thus we see that the matrix which describes the operation R'R is obtained from the

matrices of R and R' by the simple rules of matrix multiplication. Thus

P(R'R) = r(R')r(R)

These matrices which describe the transformations which the vectors a and a.2 undergo

therefore form a representation of the group. The vectors a and a2 are said to form

a basis for this representation.

Let us exhibit these matrices. Consider for example the operation a-1 . This

operation sends the vector a into itself. The vector a2 now points in a direction 300

below the negative x axis. This vector is just the negative of the sum of a1 and a 2 .

Thus we have

a, -a11 =1

a-a 2 -a 1 -a 2

or

0(I4 = 1 r(- 1 ) 1 2 = -1

r(a-1 )2 1 = o r(a-l)Z2 = - 1

,i0 i1

In a similar way, matrices representing all the operators in the group can be found.

They are as follows

~-15-



(REPRESENTATIONS OF A GROUP)

r(E) = r()=
(0 1 0 -(0 0

r( = ((Z) = (2-6)3) (oo, 0)
r(c32) = )P(3) =

We notice that this representation is faithful since there is a one to one correspondence

between elements of the group and the matrices.

If we look back at Chapter I we find that we have another two-dimensional

representation of the group C 3v. In the notation of this chapter we denote

p'(E) = 1  r'() = M 4

I. p'(C3 ) = M 2 '(. 2 ) = M 5 (2-7)

r(c 3 M3) = M 6

we see that these matrices also form a representation of the group.

One might wonder if these two matrix representations of the group are related

by a similarity transformation and are equivalent. This is indeed the case. The ma-

trices r"(R) have as a basis a pair of unit vectors a 1 ' pointing along the +x axis and

a.' pointing along the +y axis. That the matrices which these vectors generate are the

matrices r'(R) can easily be checked. We are now in a position to find the similarity

transformation relating these two two-dimensional representations. The vectors a

and a?' can be expressed in terms of a and a2.

2

From the geometry of an equilateral triangle it can easily be seen that

_1 2 -.

a1  -7a 1 + - a2  (z-9)

a2 =a 1

-16-
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or

S r3Z-O

or conversely

a 1  a 2

a2 -Z a I -2aZ

(2li

In this way, we can find the primed matrices in terms of the unprimed matrices

2
Ra' = S.. Ra.i j=l 3 J

2 2

S.. P(R)kj
j=I k =1 (2 (-)2 2 2

)~ k Zm.k am
r'(R) .a

mi

or in matrix notation

r'(R) S 1 r(R)S (Z-13)

We have seen, therefore, that the two two-dimensional representations P(R) and r'(R)

are equivalent and the similarity transformation transforming all the matrices in one

representation to those in the other is the matrix S representing the transformation of

bases.

We might also note that the matrices r'(R) are unitary. (See Appendix. ) In

this case, r'(R)t = r'(R - 1 ) = [r'(R)]-1. The matrices r(R) are not unitary but are

related by a similarity transformation to the unitary matrices pI'(R). We shall be in-

terested, primarily, in unitary matrices.

We can find other representations of the group C 3v One trivial representa-

tion is obtained by identifying every element of the group with one by one matrices having

-17-
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(REPRESENTATIONS OF A GROUP)

+1 as their only element. That is r(E) C 3 ) .... = (aI) = (1). This clearly

satisfies the definition of a representation of the group. It is clear that any group can

be represented in this manner. This is called the identity representation of the group.

We can also represent the group C 3v by one-dimensional matrices in another

way. Let us set

I'(E) = F(C 3 ) F'(C 3
2 ) = (I)

and (Z- 14)

' P(°I) = fl(.) = r( 3) = (-1)

/! Thus, for example

P(C 3) r(l 2 ) = r(C 3 '2 ) ()(-) = (i) )

It can be easily checked that the remainder of the group multiplication table is checked

[ tby this representation. We have now found two one-dimensional representations of

C 3 v. These, however, are not equivalent. There is no one by one matrix which brings

[, the identity representation into the second of the one-dimensional representations through

a similarity transformation.

The representation of the group C 3 v given by Eq. (2-14) affords an example

of a representation generated from a representation of a factor group. We remember
2 1that in Chapter I we found that the group {C3' C3 , El formed an invariant subgroup

of C 3 v. This subgroup together with the coset {0,1 2' o 3 }T when considered as ele-

ments of an abstract group, form the elements of the factor group. If we denote the
2

elements of this factor group by E' (corresponding to the invariant subgroup C 3 , C 3

E) and A' (corresponding to the coset ji' ' c3 J ), then the multiplication table

for this factor group is given in Fig. Z-2. This group can be repre-

El Al sented by representing E' by the matrix (1) and A' by the matrix

(-). As we mentioned in the first paragraph of this section; we can
El E' A'

generate a representation of the group C3v from this representation
A' I A' I E' of the factor group by letting the matrices corresponding to E, C 3,

and C 3 be (1) and the matrix corresponding to the remaining elements
Fig. 2-2 of the group be (-1). This is the representation of Eq. (2-14).

We have seen in this section how we can generate from one representation of

a group many others through the use of a similarity transformation. There is another

method by which we can, from a given representation, generate another. If for two

elements of a group we have the relation that AB C and we have for the matrices

-18-



(2. REDUCIBLE AND IRREDUCIBLE REPRESENTATIONS OF A GROUP)

representing these elements r(A) r(B) = r(C), then it is possible to generate another

representation of the group in the following way. Let us take the transpose of both sides
of this multiplication of matrices. This yields r(B) r.) = r(c). * Let us now take

the inverse of both sides of the last relation. This yields pA [= (B

Thus the matrices which are the inverses of the transposes of the matrices representing

the elements of the group also multiply in the same way as the matrices in the original
representation. These new matrices also form a representation of the group. In the

case of unitary representations (representations in which all the matrices are unitary)

the inverse of the transpose is the same as the complex conjugate of the original ma-

trix. In this event the new representation will just be the complex conjugate of the ori-

ginal representation.

2. Reducible and Irreducible Representations of a Group

A representation r(R) of a group (where R is an element of the group) is

called reducible if all the matrices in the group can be put in the form of (2-15) by a

single similarity transformation

r'(R) = S_ r(R) = -() (2-15)

0 0 (R)

if n were the dimension of the representation P(R), and P l(R) were a square matrix

with n 1 rows and columns, P2 (R) would be a square matrix with n 2 = n - n1 rows and

columns. Q (R) is a rectangular matrix with n1 rows and n2 columns. The 0 in (2-15)

represents a matrix with n1 columns and n2 rows having all elements zero. If there

A .exists no similarity transformation which can bring all the matrices of a representation

to the form (2-15), then the representation is called irreducible. We can also notice

that for a reducible representation the portions rI(R) and r 2 (R) also form a repre-

sentation of the group. This is most easily seen by taking the product of two matrices

in the representation. Thus

r( I (R) Q (R) r(R) Q (R)
r'(RR') = p'(R) p'(R')= ( (2-16)

0 P2(R) 0 rI2 (R')

*We make use here of the fact that the transpose of the product of two matrices is just

the product of the transposes in the reverse order. This is easily seen

since the i, Jth element of [AB] is Z AjkBki. The , jth element of BA is

ZB ikAjk. Thus we have shown A B=
!% k
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(REPRESENTATIONS OF A GROUP)

P(R) P(R') P(R) Q(R')+ o(R) r 2 (R')

r (R )  2(R ')  
(2-16 con'd)

I [I(RR') Q(RR')

0 r2(RR)

Therefore we have that

P 1 (RR') = r1 (R) rI(R')

(2-17)
r(RR,) = P2 (R) P2 (R')

Thus r 1 (R) and r 2 (R) form representations of a group. These two new representa-

tions may or may not be reducible themselves.

If this reduced matrix r'(R) is unitary, we can show that the Q(R) portion

of the matrix must be zero. Since the matrix for the inverse of a group element R, in
the case of a unitary representation, is the complex conjugate transpose of the matrix

representation R, the matrix for r'(R- ) would have the form

(Ri)] t [r, R)] t)(-)

since all matrices in the representation of the group must have the form (2-15), we see-

at once that [0R t 0 or 0(R) = 0. Thus unitary matrices in reduced form will have

square unitary matrices down the diagonal and zeros elsewhere. In this case, the re-

ducible nature of r(R) can be expressed in the equation

P(R) = PI(R) + P 2(R) (2-19)

This equation does not mean the addition of the matrices in the ordinary sense but

merely expresses the fact that P(R) can be put in the form (2-15) by a similarity trans-

formation.

In the example of the two two-dimensional representations of the group C 3v,

-20-



(2. REDUCIBLE AND IRREDUCIBLE REPRESENTATIONS OF A GROUP)

we saw that one was unitary and the other was not. We were able, in this case, to find

a similarity transformation which sent the non unitary representation into the unitary

one. This is actually a general result and we shall now show this.

Theorem 2: Any representation of a group consisting of non singu-

lar matrices can be transformed by a suitable similarity transfor-

mation into a unitary representation (is equivalent to a unitary

representation.

Proof: Consider a group with elements which we denote by R. We assume we have

a representation of this group r(R) which consists of non singular square matrices.

(A necessary and sufficient condition that a matrix is non singular is that its determin-

ant does not vanish. ) Let us construct the matrix

p

H = X F(R) r'(R)t (2-20
R

Here the summation goes over all elements R in and P (R) t is the adjoint (complex

conjugate transpose) of P(R). This matrix H is Hermitian as can easily be seen. If

K we take the transpose of (2-20) we obtain

H= r(R)t r(R)
R (2-21)

Z -(R)* r(R)t*

R

This shows that the transpose of H is just the complex conjugate of H which is just an-

other way of saying the matrix is Hermitian. A well known matrix theorem states that

a Hermitian matrix can be brought to diagonal form* by a unitary transformation. Let

us bring H to diagonal form by the unitary transformation U. That is

U -1 HU D; Ut = U- 1 (2-

where D is a diagonal matrix.

We have therefore

D Z u- U - r(R) r(R)t U

R

= Z u- r(R) U [U - r()u] (2-23)
RI

: p'(R) p'(R) t

*A matrix D is said to be diagonal when it has nothing but zeros off the main diagonal.
That isDij 0 for i j.
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(REPRESENTATIONS OF A GROUP)

where

p'(R) = 1 (R)U (2-24)

The diagonal elements of D, namely Djj, are given by

D.. r'(R)rk I (R) k  (2-25)
k R

and are, therefore, all real and D.. > 0. They cannot be equal to zero unless r'(R)jk =

0 for all R and k. This is impossible since this would mean that the determinant of

r'(R) would vanish since all the elements in one row would be equal to zero. This con-

tradicts the hypothesis that r(R) is non singular. Since the diagonal elements of D
are all real and positive, we can define matrices Dl/ 2 and D1/2 having all positive

diagonal elements by taking the positive square root of all the diagonal elements of D.

We now see that

I = D - I /  X p'(R) p'(R)t (-26)
R

Let us now define

"(R) / DR) 0 1/2 (2-27)

We are now in a position to show that the matrices p "(R) are unitary. Consider

p"(R) p"t(R)t = [D-1/2 r, (R) D 1/2] [D-1/2 r'(R1) Dl/2]t (2-28)

Let us now insert the matrix 1 in the form of Eq. (2-26) between the square brackets

in Eq. (2-28)

p,,(R) ,,,,t = [1-/2 ,(R1/ p1/2] [D-1/2 P'(R) Dl/2]
r,~ ~~ (R p't D l()D/(R) -1/2 01/

= D-l l 2 r'(R) D 1/Z [ - l/2 Z r,(R,) r(R)t 0-11 2]D l/ r(R)t D-1/2

= - 1/2 r, r(R) r I(R9) rt(RI)t r'(R)t] D 01/ 2-9

R'

-D1/2 { r"(R) r,(R' [r'(R) r(R') -jtJ o-/2

D r(RRt) p'(RRI)t DI,, R '
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We have noticed from Theorem 1 in the first chapter that if R' runs over all the ele-

ments in the group the product RR' runs over all the elements of the group once more.

Therefore, we have that

r"(R) r"(R)t = D-1/ r'(R) p'(R)t D1/2 = (2-30)
R

This is just the condition that makes a matrix unitary. Thus the representation r"(R)

is a unitary representation. The similarity transformation which brings the non uni-

tary representation into the unitary representation is through the matrix UD1/2

"(a) U 1 r(R) UD / 2 = D- 1/2 U-1 r(R) UD 1 / 2  (2-31)

is the desired unitary matrix.

From the result of this theorem it can be seen that unitary representations

of a group are particularly interesting to study. In this connection there is another

property of unitary representation which is important. It turns out to be the case that

equivalent unitary representations are related by a similarity transformation using a

unitary matrix. This result is summed up in the next theorem.

Theorem 3: If two unitary representations of a group i are equi-

valent through the use of a matrix S, then a unitary matrix U can

be found which, when used in a similarity transformation, sends

the matrices in one representation into those of the other. Thus

if P'(R) and r(R) are the two representations and we have

r"(R) = s -1 r(R)S (2-32)

then a unitary matrix U can be found such that

. P'(R) = U-1 r(R)U = Ut r(R)U (2-33)

Proof: From Eq. (2-32) we have that

Sr'(R) = r(R)S (2-34)

for all R in t' Let us take the adjoint of both sides of this expression

SpI(R)t t = Str(R)t (z-35)

or
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r'(R - ) S_ = S t r(R - ') (Z-36)

for all R in . The latter relation is true because of the unitary nature of the two

representations. Since (2-36) is valid for all operators R in the group and since for

every element of the group there is a corresponding inverse, we have

r'(R) S T -- St r(R) (2-37)

If we multiply (2-34) through from the right by S t and make use of (Z-37), we obtain

P(R) SSt = Sr'(R)St

(2-38)

= Sstr(R)

By methods similar to those used in the proof of the last theorem, we see that S St

is a Hermitian matrix. Under some unitary transformation V it can be brought to

diagonal form D.

V - ' SSt V = D
(Z-39)

SSt= VDV 1

In analogy to the previous theorem we can show that D will have positive diagonal ele-

ments and we can, therefore, define a matrix D_ which is diagonal with real di-

agonal elements. If we denote K = VO-/ D V- then U = KS will be shown to be

the matrix which we are looking for. In order to do this, we must show that U is uni-

tary and that P'(R) = U - I r(R) U . In order to show that U is unitary we show that
~uut=i".

UUt = KSSt Kt = VD- /  V -  SS t VD- '/ V 1  (Z-40)

In (2-40) we have made use of the fact that V is unitary and that D - 1/2 has nothing

but real diagonal elements. Therefore

UUt = VD - l / z DD - 1 / z V - 1 = = i. (Z-41)

In (2-41) we have made use of Eq. (2-39). Having shown that U is unitary all that re-

mains is to show that r(R) = U " P(R)U .
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(2. REDUCIBLE AND IRREDUCIBLE REPRESENTATIONS OF A GROUP)

U-i P(R)U = S-I VD / ' V -1 r(R)VO - /2 VVDS (2-42)

If in Eq. (2-42), we could commute the matrix D 1/Z through V - 1 r(R)V we could then

prove the theorem. From Eqs. (2-38) and (2-39) we have

(R)VV- 1 = VDV-r r(R) (2-43)

Multiplying from the right by V and from the left by V 1 yields

V- r(R) VD = DV- r(R)V (2-44)

From this last equation we see that D commutes with V - 1 P(R)V. If we call the ma-

trix elements of V 1 r(R)V, Aij, then in terms of components we have

A i(D.. - Dii) = 0 for all i, j (2-45)

This means that if Dii is different from Dj. for some i and j Aij must vanish. From

this, it is clear that

A. .(D/ - D 2) for all i,j (2-46)
Aij j

SThus we see that D 1i/2 commutes with V- r (R) V . Using this fact in Eq. (2 -42)

yields

U -  r(R)U = s-IV V-P(R)V Dl/zD-/ZV-S
(2-47)

= S r(R)S

This completes the proof of the theorem.

We have now seen that every representation of a group through non singular

matrices is equivalent to a unitary representation and that equivalent unitary repre-

sentation and that equivalent unitary representations can be obtained from one another

through the use of a unitary transformation. We have also seen that a reduced unitary

representation can be written in the form

r(R) = PI(R) + r2 (R) (2-48)

In order to complete our discussion of reducibility we shall need to show that a repre-

sentation reduced in the form (2-15) can, by a similarity transformation, be put in the
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form (2-48). (In other words the Q portion of (Z-15) will vanish.) This result is sum-

med up in Theorem 4.

Theorem 4: If a representation is in its reduced from (Z-15), a sim-

ilarity transformation will bring it to a unitary reduced form. (That

is, in (2-15), r1 (R) and P2(R) are unitary and Q(R) = 0.)

Proof: Let us assume that we have a representation P(R) where P(R) has the form

r_ (R)_Q_(R)

F'(R) P2 (R)) (2-49)

Let us form the Hermitian matrix

H = X I(R) r (R)t (2-50)
R

This matrix, as we have seen from the proof of Theorem 2 when diagonalized by a

unitary transformation, has nothing but positive non zero diagonal elements. This de-

fines a positive definite Hermitian matrix. A well known matrix theorem states that

for a positive definite Hermitian matrix a non singular matrix S can be found such that

SHSt (2-51)

In addition, this matrix can be chosen to have the form

S 11 S 12

0 S0Z

S = s33 (2-52)

(0 0 S nn)
Snn/

In other words, all the matrix elements below the main diagonal vanish. With this ma-

trix S let us form F"(R) = S r(R) S "1 . In order to show that S is the desired ma-

trix all we need do is show that P '(R) is unitary.

*See, for example, "The Mathematics of Physics and Chemistry" by H. Margenau and
G. M. Murphy (D. Van Nostrand Company, Inc., New York, 1943. This theorem
is also contained in "Die Theorie der Gruppen von Endlicher Ordnung" by
Andreas Speiser.
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r,(R) p(R)t = {sr(R) S -l} {st-lr(R)tst} (2-53)

Between the curly brackets let us put j in the form of Eq. (2-51). This yields

P'(R) P'(R) t = SP(R) HP(R)tSt (2-54)

From the proof of Theorem 3, we see that this is the same as

p'(R) n'(R)t SHS t= (2-55)

From this we see that, r '(R) = s (R) s- is unitary. Now let us notice that both

S and S have the form (2-52). (That S - I has this form can be seen by expressing

! S1 in terms of the determinant of S and the cofactors of S .) Thus we see at once,

from the block multiplication of the three matrices that form P'(R), that P'(R) must

*have the reduced form

R P') I = ((2-56)

Since p'(R) is unitary, we have seen that Q'(R) = 0, and that rI'(R) and r2'(R) are

unitary matrices.

P'(R) = (= Pi(R) + P2 ,(R) (2-57)
0 r? I'(R)

This completes the proof of this theorem.
From the theorems of this section, we see that if a representation is reducible

to the form (2-15) by a similarity transformation, it is reducible to the form (2-57) by

a similarity transformation where P 1 '(R) and r' 2 '(R) are unitary. If the original re-

ducible representation were unitary, then the reduction to the form (2-57) can be car-

ried out through a unitary transformation (Theorem 3).

We may write a reducible representation in the form

r(R) = P(R) + rz(R)

It may be that 1 (R) and r 2 (R) can be further reduced. We can keep on reducing the

blocks which appear in this process. Eventually this process must cease when all the

-Z7-



f
(REPRESENTATIONS OF A GROUP)

blocks which appear are irreducible. Thus we see that a representation is either irre-

ducible, or can be expressed as a "sum" of irreducible expressions.

(R) = nI rfl(R) + n2 r. (R) + ... nr rr(R) (z-58)

By a sum of irreducible representations (2-58) we mean that r(R) can be written in the

form (through a similarity transformation)

r1 (R)

0

(z-59)

0

F (R)r

Here nk is the number of times the irreducible representation Pk(R), or something

equivalent to it, appears. The irreducible representations of a group appear as the

funidamental entities out of which all representations are built. We see from this that

the properties of irreducible representations will be important to us in our later work.

One of the most important theorems concerning irreducible representations of

a group is Schur's Lemma. This theorem plays such a central role in the further de-

velopment and its applications are so numerous that we shall devote the next section to

the proof of this theorem.

3. Schur's Lemma

Before going on to the proof of a Schur's Lemma we shall need a closely related

theorem.

Theorem 5: The only matrix which commutes with all the matrices in

an irreducible representation is a constant times the unit matrix.

Proof: We .have, by hypothesis, that a matrix commutes with all the matrices of an

irreducible representation. Let us call this matrix C and the matrices in the irredu-

cible representation r(R). (We assume that the matrices P(R) are unitary and of

dimension n.)

Cr(R) = r(R) C for all R (Z-60)

If we take the adjoint of this expression, we find that

-Z8-
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'(R)t G1 = tp(R)Tfor all R (2-61)

or

r (R - I ) cl = CtP(R- 1) (2-62)

This last relation means that C) commutes with all the matrices representing the

group since as R runs over the elements of the group so does R - I
. Therefore, C + C

and i( C; - C') commute with all P(R). These matrices are Hermitian. It is, there-

fore, sufficient to show that any Hermitian matrix which commutes with all P(R) is a

constant times the unit matrix since C is expressible as a linear combination of these

Hermitian forms. We shall therefore assume that C is Hermitian. If this is the

case, it can be brought to diagonal form D by a unitary transformation U(D = U
CU ). If the same unitary transformation is applied to P(R), we can define

r, p(R) = U-' P(R)U (2-63)

PI'(R) commutes with D since

r'(R)D - Dr'(R) = U-I (R)U u-Icu - U-Iu U-Ir(R)U

= U-Ifr(R)c - cr(RJU (2-64)

=0

If D is not a constant times the. unit matrix, then it must have unequal diagonal ele-

ments. Let us assume that m of the diagonal elements are equal but distinct from the

remaining n - m. Our unitary transformation U can be arranged so that the m equal

diagonal elements are the first m diagonal elements. Our commutation relation (2-64)

states that

I'(R)sr Drr = Dss F'(R) s,r = 1 ... n (2-65)

If Dss is taken to be one of the first m diagonal elements and Drr is taken from the

n - m remaining elements, then we obtain

'(R)[Drr- Dss] = 0

s 0 1... m (2-66)
(' R )S r  I ,

r =m+l ... n

-29-
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In other words r'(R) is a matrix of the form

n 0

This means that P (R) has been reduced. This contradicts the hypothesis. We have

therefore shown that D is a diagonal matrix with equal diagonal elements or D = c I.
If D has this form then

C = UDU - = UlU - ' = ci (2-68)

has the same diagonal form. This completes the proof of this theorem. Even though

we have only proved this theorem for unitary representations we can easily extend the

result to cover the case of non unitary irreducible representations. If I'(R) were not

unitary it could be made unitary through a similarity transformation. (See Theorem 2.)

If we denote 11'(R) as the matrices in the unitary representation and S as the matrix

which makes r(R) unitary, then
I.

-[(R)= S - 1 r(R)S (2-69)

We notice at once that if P(R) is irreducible so is the unitary representation r'(R).

If a matrix C commutes with all r(R) then the matrix S-CS commutes with

P'(R) = S 1(R)S. This means that S1 C S is a constant times the unit matrix.

This means in turn that C is a constant times the unit matrix which is what we desired

to show.

The converse of Theorem 5 also provides a useful theorem. This converse

provides the first method which we have for testing whether or not a representation is

irreducible short of trying all possible similarity transformations on the representation

to see if any will result in the form (2-15).

Theorem 6: If the only matrix which commutes with all the matrices

of a given representation is a constant times the unit matrix, then the

representation is irreducible.

Proof: Let P(R) be the matrices in the representation. Let us assume the conclusion

were false, that is, let us assume r(R) is reducible. We know, from the results of

Theorem 4, that a reducible representation can be brought to the form (2-57) by a sim-

ilarity transformation. Let us put the representation r(R) in its reduced form (2-57)

by the use of a similarity transformation S.
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m n-rm

P'(R) = S P(R) s = ((2-70)
P 2 (R)

It is clear that the matrix m n - m

C = ) (2-71)

where c 1  c. commutes with P'(R).

P(R)C - Cr,(R) = 0

S' r(R) SC - 0S - ' P(R)S 0

Multiplying from the right by S and from the left by S yields

P(R) SCS-; - ScS - ' r(R) = 0 (2-73)

We know from the hypothesis that SOS - I must be a constant times the unit matrix.

Therefore

SCS- 1 = ci

(2-74)

This cannot be since c 1  c 2 . We have been led to a contradiction and this proves

that P(R) is irreducible.

We are now in a position to prove Schur's Lemma.

Theorem 7: (Schur's Lemma) If rI(R) and r 2 (R) are two irredu-

cible representations of a group with dimensions n1 and n2 respect-

ively (n 1 _< n.) and we have found a matrix A with n1 rows and n.

columns such that

Ar.(R) = PI(R)A for all R (2-75)

then either A is a zero n1 by n2 matrix or n1 = nA is square,

non singular, and the representations rl(R) and r,(R) are equivalent.
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Proof: We assume from the outset that rI(R) and rP(R) are unitary. Let us take

the adjoint of Eq. (2-75).

P2 (R) t At = At P(R)t for all R (Z-76)

or

r 2 (R- 1 )At A t P(R) for all R

(2-77)

PZ(R) At = At P1 (R)

Multiply (2-77) from the right by A and (2-75) from the left by At and subtract. From

this we see that

At A r 2 (R) = P2(R) AtA for all R (2-78)

We know from the result of Theorem 5 that the only matrix which commutes with all

*x the matrices of an irreducible representation is a scalar times the unit matrix. There-

fore

AtA = (2-79)

Now ifc is not equal to zero and n = n 2 , then the determinant of AAt does not vanish.

From this we conclude that the determinant of A does not vanish. This means that the

inverse of A exists and from (2-75)

A- ' rt(R)A = rz(R) (2-80)

In this case the representations are equivalent. If c vanishes, then

At A = 0 (2-81)

which means, when written out for the diagonal elements

n
* AA = 0 (j = I ... nl) (2-8Z)

k=1

FrQm this we conclude that A jk = 0 for all j and k. Thus A is a zero matrix.

If n 1 < n2 then A is a rectangular matrix. We can form a square matrix by

adding n2 - n 1 rows of zeros to A forming a matrix B.

-32-
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A . . . . . . A In
A .. . .. . . . . . . . . . . . in2

B = (2-83)

A 1 .. . . . . . . . . . . A

0. .... 0.........0

0. .0.......0. .0

It is clear that

AtA = BtB (2-84).

Since B has some all zero rows, the determinant of B vanishes, Therefore the de-

terminant of AAt vanishes which means in turn that the c defined above vanishes.

We have again that

n2

SA * Ajk = 0 (j-1 ... nl)
k;1

From this we conclude that Ajk =0 for all j and k. Thus we have shown for the case

n 1 < n that A vanishes. This completes the proof of the theorem.

The case for n 2 < n1 can be handled in an analogous manner. Schur's Lemma

is also valid for non unitary representations. We shall not complete the proof in detail

for this case but merely indicate the method. Suppose I(R) and r 2 (R) were not

unitary. Matrices S and R can be found such that

r '(R) S - 1 (R)S

(2-85)
Z' (R) =R -I r (R)R

form unitary representations of the group. They are, of course, also irreducible. By

hypothesis, we have that

AP 2 (R) = rl(R)A

(2-86)
ARr 2' z(R) R -1 = SPI(R) S -

1A

S14 -33-
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or

S -1 AR r'2 (R) = r'(R) S-'AR

From the result of the proof of Schur's Lemma for the case of unitary representations,

we know that either S- AR is a zero matrix or else nZ = n I and S - AR is square

non singular and the representations P1 '(R) and r 2 '(R) are equivalent. From these

facts we can conclude that either A is a zero matrix or else n 2 = n I and A is square

non singular and the representations r (R) and r 2 (R) are equivalent. This indicates

the completion of the proof for the non unitary case.

In the next section we shall apply Schur's Lemma to the proof of the orthogonality

relations for irreducible representations of a group. These relations form one of the

most useful of all properties of irreducible representations.

4. The Orthogonality Relations

The orthogonality relations for irreducible unitary representations of a group

state that for two distinct inequivalent unitary representations rl(R) and r2(R)

1 (R)iJ r'Z(R)k, =0 for all i, j, k, 1 (2-87)
R

The summation extends over all R in the group which we shall assume to be of

order g. For the coefficients of the same unitary irreducible representations of the

group

r rI(R)* r l(R)kl =1g 6 6 (2-88)

Here n 1 is the dimension of the irreducible representation. We can put these two rela-

tions into a single relation

Zr (R)j g(R) - 6 6 (2-89)
Rr Rki CiC ik ji

th
n is the dimension of the a irreducible representation and the sum as written van-

a

ishes unless we have the same irreducible representation and the same row and column

of that irreducible representation.

We shall prove this useful theorem by the use of Schur's Lemma. Let us con-

struct for a pair of representations (we shall not at this point assume they are unitary)

the matrix A with n2 rows and n1 columns

A r X r2 (R)X [ r (R) -  (2-90)
R
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here r,(R) is of dimension n 2 , rl(R) is of dimension n,, and X is an arbitrary

rectangular matrix with n2 rows and n1 columns.. We first note that

r 2 (R')A = A I(R') (2-91)

We can see this easily since

r 2(R') A r. r(R R) X [r, (R)
R (2-92)

= - r 2 (R'R)X [rp(RIR)]- I (R')

R

We notice that as R runs over the group so does R'R. Therefore

r 2 (R'R)X [r,(R'R)J-' = A (2-93)

R

which proves our assertion. We notice now, from Schur's Lemma, that if r 2 (R) and

rl(R) are inequivalent A must vanish. We have, therefore, for arbitrary X

r r (R)x [ 1r( R j-1 = 0 (2-94)
R

I: j Writing out the matrix elements of A this becomes

r £ (R)ij, XjI, =r0 (2-95)

j'' R 2 )lk 0

Let us let Xj,,, vanish except for the element X which we take to be unity. From this

we get

-r2(R)i j r1(R -1)k = 0 (2-96)" R
2-. (R- 1) k

For a unitary representation r (R Ik= rl(R)kl. Therefore for two inequivalent

unitary representations we have proved the theorem, namely

r2(R)ij rl(R)k1 = 0
R k

If the representation ('(R) is the same as P(R), then we have

r (R)A = A r (R) (2-97)

This in turn means, from the result of Theorem 5, that A is a scalar times the unit
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matrix

A = Z PI(R)x ri(R- ) ci (Z-98)
R

where c, of course, depends on X . Let us once again choose X in such a manner

that the only non vanishing elements is X which is unity and call the corresponding
c, cjl

=r(R)ij rcj 1 
6 ik (2-99)

We must now determine cj. Let us set i = k and sum over i (i = 1 ... n,)

Z 1 rI(R)ij r(R-1)i = n, Cj, (2-100)
i R

But

r l(R)ij r 1 (R-l)i = FI(R-1R)j = 61j

Therefore

R & =n cy

or

g j = n1 cj

c
jl n I  jl

which finally means that

r1
r = l-- 6 6 (2-102)

I n1  ji ikR

For a unitary representation, we have

r rI(R)* rI(R)ij - nl ik6 (Z-103)

This proves the second portion of our orthogonality theorem for group representations.

Before leaving these general orthogonality relations it will be useful to write

the orthogonality relations for non unitary representations of the group in a slightly

different form. The orthogonality relations for non unitary representations are summed
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up in Eqs. (2-96) and (2-102). These two relations can be combined into a single
orthogonality relation for non unitary representations which takes the form

r (R)ij rp(R 1 )k = # 5 ik 6 (2-104)

R a

We saw in the first section of this chapter that if we had a representation r(R) we
could form a new representation of the group by using the matrices P(R)- 1 . Let us

define r(R)t as

(R)t = r(R)- = r(R-) (2-105)

With this definition we can rewrite the orthogonality relations (Z-104) in the form

(a)ij r(R) = g - 6 ik 6 (2-106)

When written in this form, for non unitary representations, the orthogonality relationst
involve the matrix elements of the representation r (R) with those of P (R). For

the case of unitary representations rP(R)t = P(R)* and our relations -106) become

the ordinary orthogonality relations between the elements of a unitary irreducible

representation.

As an example of these orthogonality relations we may consider the group C 3 v.

We have found two one-dimensional representations. One is the identity representa-

tion and the other is the representation given in Eq. (2-14). These are clearly irre-
ducible representations. (A one-dimensional representation of any group is irredu-

cible. It cannot be put in the form (2-15) by a similarity transformation. ) We also

had a two-dimensional unitary representation using the matrices M 1 ... M6 which we

introduced in the first chapter. We can see that this is an irreducible representation

of the group in the following way. If it were reducible, since it is two-dimensional,

it could be reduced so that every element of the group were represented by a diagonal
matrix. Diagonal matrices commute. The group elements in general do not commute.

Since we had a faithful representation we have encountered a contradiction and there-

fore this two-dimensional representation is irreducible.

Let us write out these three irreducible representations
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E C 3  C 3
2  1

r 1 (R) 1 1 1 1 1

1 01 -1 -1 -1

110 ,' 1 -/ -1 0 1 -,,,5 1 .,
f 2 2 2 2 z 2 2

0() 1 -f3 1 /3- 1 0 1 --/ 1 /3'T

2 2 2 2 2 2 2 2

i' We can now easily check a few of the orthogonality relations. For example

ZR I(R)ll r (R) l 11 (1) (i) + (1) (1) + ()(1) + (1)(-) + ()(-) + (1)(-) i

=0

Rl(R) 0) +i(o (i) + VT_3 1)0 1(6

R 312 (1 + + (12

=0

R r 3 (R) R)2 1 = (0(0) + -Z3 - 3) + /3)(Yri) + () (Q) + ( )( V) +l3 (.Z)
R 3 23)1 () 2 2 2 2 2 2 2 2

=0

R 2 1 2 22 2 2 2

= 6

2
' -3 _6i ] rz~~r(R)l rz(R)I (1)(1) + MM(1 + (1)(1) + (-)-)+ (-1)(-1) + (1(1

,, 1:1I -6 = _ 6

5. Group Characters

In the last sections, we have studied representations of group. We noticed

that if we had a representation of a group we could generate a great many more from

it by using a similarity transformation. If a representation were reducible, all

representations equivalent to it were also reducible. If a representation were irre-

ducible all representations equivalent to it were also irreducible. In this way, we

jsee that we can assign properties to a representation and all those equivalent to it.

We would like to have some specification of a representation which is unchanged if

the representation undergoes a similarity transformation. The character of a rep-
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resentation provides such a specification.

Before going into this let us notice that the trace of a matrix (sum of the di-

agonal elements) is unchanged if the matrix undergoes a similarity transformation.

Consider a matrix A and a matrix A' = S AS . The latter matrix is related to

the former through a similarity transformation. By the trace of A we mean

trace (A) = . A.. (2-108)
I

If we calculated the trace of A', we obtain

trace (A') = trace (S-l AS

ii

= £ Si I A.kSk

ijk (2-109)

S [ss'j A
jk

jk kj A jk A Ajk
trace (A)

If we were to calculate the trace of every matrix P (R) in a representation of

a group, this collection of numbers would be the same for every representation equiva-

lent to r(R). The traces of matrices representing a group are denoted by X(R) and

are called the character system of the representation

X(R) = r r(R).. (2-110)
J J

If the group is of order g then the character system of the representation consists of

the g numbers x(R).

From the invariance of the character under a similarity transformation, we

can also conclude that the characters of group elements in the same class are equal.

This is clear since if R and R' belong to the same class R = X- IR' X. For the

matrices in the representation r(R)

P(R) = [P(x)]-l r(R') r(x) (2-111)

From this we conclude that if R and R' are in the same class x(R) = X(R'). Thus if

the groupq had r classes C 1 = E, C 2 , C 3 , ... , Crwithh 1  1, h2 , h 3 ... ,h r

elements respectively and if we denote the ith class of elements by Rli, •.., Ri, we

i -39-
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have that

* x(R') = yX(R') ... =X(R' (2-i1z)
1 2 h.

Thus, it is seen that for a given representation the characters are only a function of
which class the group elements belong, We could, therefore, specify the character

system of a given representation by giving the characters of elements belonging to
the same class. In this way, we see that we could denote the character by x(C1 ),

where x(Ci) is the character of all elements in the ith class.
In the last section we noticed that there were orthogonality relations between

the matrix elements in irreducible representations. These were summed up for ir-

reducible representations in Eq. (Z-106)

Z r (R)ij (R)t = g 6 6 6 (Z-113)
R a~ rp ki n p ik ji

If we set i =j and k =land sum i from 1 to n and k from 1 to n we obtain

X(R) X0(R) t - g 6 6
R a =1k 1

- 6g 1 (2-114)n a 5 Pk= 1

g6

Thus, we have an orthogonality theorem between group characters. Here xa (R) is

the character system for ra(R) and x(P(R) t is the character system for rP(R)t =

We may write this orthogonality relation somewhat differently by noticing
that if X(R) is the trace of the matrix r(R) in a group representation, then X(R)t

* t
x(R) is the trace of the matrix r(R) . This can most easily be seen by noticing that
if the representation r(R) is made unitary by a similarity transformation using a

matrix S, then we have for the unitary representation

r'(R) = S -1 P(R)S (Z-115)

and therefore

r, (R)r , f(R) S S(R) t 1 (2-116)t *{R} :{Z- 1

Thus P(R) is equivalent to the representation r'(R) using the matrix S-. The
trace of pt,(R)* is just the complex conjugate of the trace of pr(R). From the in-
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variance of traces under a similarity transformation we see at once that

x(R)t = trace (p(R)t) = trace ( r'(R)*)

= [trace (rI(R))j* (2-117)

= [trace (F-(R))]*

= x(R)

From the preceding paragraph, we can rewrite the orthogonality relations in

the form

xa(R) X (R)* = g (-118)R

We have also noticed that the characters associated with elements in the same class

are equal. Our orthogonality relations can, therefore, be written in the form

r*
,_hi Xa(Ci) xP (Ci) = g 6 ' (2-119)

i X.X g6.

From the preceding discussion we can conclude
Theorem 8: A necessary and'sufficient condition for the equivalence

of two irreducible representations is the equality-of their charactei'

systems.

Proof: It is clear from the invariance of characters under a similarity transformation

that we have a necessary condition. To show the sufficiency, we must show that if the

characters of two irreducible representations are identical, then the representations

are equivalent. If we call P(R) and P'(R) the two irreducible representations and

they have characters x(R) and x'(R) (x(R) = X'(R)). If they were inequivalent,

x(R) X'(R) 6 = 0 (2-120)
R

from Eq. (2-118). But we know that for a representation r(R) from Eq. (2-118)

X(R) X(R)* = g (2-121)
R

Since X(R) = X'(R) we have been led to a contradiction. From this we see that all we

need do to check the equivalence of two irreducible representations is to compare

their character systems. It is the case that the same theorem holds for reducible

representations. Before we prove this, we must analyze the relation between a re-
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ducible representation and its reduced form more fully.

We saw in Section 2 of this chapter that every reducible representation could

be reduced to the form (2-59) through a similarity transformation. This reducibility

was expressed by Eq. (2-58)

r(R) = c1 p1 (R) + c2 r,(R) + c, Pa(R) + (2-122)

c is the number of times the a t h irreducible representation or a representation equiva-a
lent to it appears in the diagonal blocks'of (2-59). By taking traces we see that, if we

call X(R) the character of r(R),

X(R) R) + c 2 (R) + .... + caX (R) + ... (2-123)

We can find the numbers c of the following theorem.

Theorem 9: The number of times an irreducible representation r L(R)

or a representation equivalent to it appears in a reducible representa-

tion r(R) is given by

c _ (R) Xa (R) (2-124)
a R

I,

Proof: Let us multiply both sides of Eq. (2-123) by Xa(R)* and sum over R. Using

the orthogonality relations for group characters, we have that

x(R) X (R) c g (2-125)R L a
R

This proves the theorem.

From Theorem 9 we see that the reduction of a reducible representation into

its irreducible parts is unique. By being unique we mean that the number of times

that an irreducible representation appears along the diagonal in (2-59) when added to

the number of times an equivalent irreducible representation appears is a unique

number. The order in which the irreducible representations appear need not be

unique nor need the individual blocks equivalent to a particular irreducible representa-

tion be the same in both decompositions. In order to show that the decomposition is

unique, in this sense, let us assume that there were two possible decompositions.

r(R) c 1 PI(R) + ... c (R) + ... (2-126)

r(R) c c'' (R) + ... c 'I(R) +
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From Theorem 9 we see that

C = I X(R) X.*(R)
g R (2-127)

, X 'x(R) Xa *(R)

We have, therefore, that c a c a and the decomposition into irreducible representa-

tions is unique.

From this it is clear that if two representations (reducible or irreducible)

have the same character system they are equivalent. We see, from Theorem 9, that

they can, by a similarity transformation, be brought to the same reduced form if

there character systems are the same. Since they both can be brought to the same

form by a similarity transformation they are equivalent. To see if two representa-

tions are equivalent all we need do is see if their character systems are identical.

From these facts we get another interesting piece of information about the

characters. Consider, for a reducible representation (2-123)

ZIx(R)12  X x(R) X(R)* = ia x(R) a. x.(R) (2-128)
R R R ij j

Because of the orthogonality theorem

X Ix(R)I 2 = g _.g .. a. a.

R ij (2-129)

= g a1

Thus, for a reducible representation 7 1 x(R) I is the order of the group multiplied

by the sum of the squares of the number of times the various irreducible representa-

tions appear in the reducible representation. If a representation is irreducible, we

have

: Ix(R)12 = g() = g
-R

From this we conclude

Theorem 10: A necessary and sufficient condition for a representa-

tion to be irreducible is

Z Ix(R)I = g (2-130)
R
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Proof: The necessity we have already shown. That the representation is irreducible

if the relation (2-130) is satisfied is also clear. If it were reducible, then

X Ix(R)12 > g
R

which contradicts the hypothesis

X x(R)12 = g
R

This theorem gives a convenient test for the irreducibility of a given representa-
tion. For the two-dimensional representation of the group C 3 v given in Eq. (2-107)

we have

p2
x(E) 2; x(C 3 ) = X(C3

2 ) = -1; X(0-1 ) = X(' 2 ) = X((- 3 ) = 0
(2-131)

(2)2 +(1)2 +(l) +2 +=() +(0) +(0) 2 6

Thus, for this representation the sum of the squares of the characters is equal to the

order of the group and we again check that the representation is irreducible.

6. Class Multiplication, The Regular Representation, and Representation Multiplication

In this section, we shall introduce three new concepts which will prove useful

in the applications of group theory. We shall not make extensive use of them in this

section but merely employ them to determine the number of irreducible representa-

tions which a group has and, in addition, prove that the sums of the squares of the

orders of the irreducible representations is equal to the order of the group.

A. Class Multiplication

Let us denote by Ci(i = 1 ... r) the classes of a group i of order g. We shall
1 th

call h. the number of elements in the i class and we shall denote these elements by

R 1I ... Rh. We can define a quantity

i i i( -1 )
C =R 1 + R + ... Rh (2-132)

where we add all the elements in the it h class. We have not previously introduced the

sum of elements of a group. We shall not, at this point, go into the properties of

such a sum, but shall discuss this point in detail later on in another connection. With

the definition (2-13Z) we can define
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C.C+ ( + +

h. h. (2-133)

' RiRj=l q = I p q

The sum on the right-hand side of (2-133) consists again of a sum over group elements.

We notice that X C.C.X = X CiXX C.X = C.C. for any X in ' . From this we
13i 1 3 13.

conclude that the right-hand side of (2-133) consists of a sum of classes since if it

contains one element in a class it must contain all elements in that class. The sum

of the right of (2-133) might contain a class more than once. In any case, we may

write

r
CiC j = cijk Ck (2-134)

Here cijk is the number of times the class sum Ck is contained in the product C.C.

and is some integers > 0.

The quantities c - have a number of properties. First, we note that for any-1 ijk -
X in the group X CiX = C. It is clear that for any R in Ci, X RX is a number

of the sum C i since X 1 RX is in the same class as R. We can, from this, conclude
that as R runs over the members of a class C. so does X -I RX. This yields the first

i
property of cijk . Since CiC j = C.C i we conclude

cijk = cjik (2-135)

We also notice that C = EC = C.. Therefore we have the relation

c ljk =Cjlk = 5 jk (2-136)

Let us also notice that if C. is a class then there is another class consisting of theII

same number of elements containing the inverses of all the elements in C.. This is

clear since if R is a member of the class C i, then consider X- R Ix = - R X-.

The latter quantity is also the inverse of a member of the class C i. Let us denote

by C i' the class consisting of the inverses of the class C i. It may be that C i = Ci'.

Consider, for example, the class talT, o, T 3 of the group C 3 v" As we have men-
tioned the number of elements in the class C i' is the same as the number of elements

in the class C i, namely h1 . From this we conclude that C.C. either contains the iden-

tity class C 1  E hi times if j =i' or not at all if j i'. In other words

cij = h 6ji, (2-137)
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The concept of class multiplication enables us to derive a new set of relations

between the group characters. Suppose we formed for an irreducible representation

P(R) the class sums corresponding to (2-132)

h.Gi = I Ri

= r. Rp) (2-138)
p 1

Since matrices in a representation multiply just like the corresponding group elements,

we conclude from this that for any group element X

r = c a r(x) (2-139)L i

This allows us to conclude, from Theorem 5, that C must be a constant times the
.

unit matrix

C = 7] (2-140)
a. L

Let us now determine the constant T1" We can take the trace of both sides of Eq,i
(2-138) yields '1 n . If we take the trace of the right-hand side of Eq. (Z-138), we

get (since the characters of all elements in the same class is the same) h i xa(C).

From this we conclude that

Si hi XaL(Ci)
- h )(2-141)

a n

We notice from relation (Z-134) and (2-140) that

r k
cCa CC ijk Ca (2-14Z)

!k=l j a

and

r
1 k (2-143)

La ijka

Using (2-141) we obtain as a new relation between group characters

hihj XaL(Ci) xaL(Cj) r h k x(Ck

n3 alna k j c akankl 1k a

or (2-144)

r
h1 X(1 hxc)= rc..k hk x(kh h i X. (Ci) hj XaL(Cj) n, k cl ijk hkXCkk 1
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B. Regular Representation

We can generate on particularly useful representation of a group in the follow-

ing way. Consider a group -of order g with elements R 1 = E, R, . . . . . . Rg. We

can consider these group elements themselves as the basis vectors which generate a

representation much as we consider the vectors in Section 1 of this chapter as generat-

ing a representation. Thus, if we were to consider some element X of the group we

may write

g
XR = Ak 1(X) Rk (2-145)

From the group postulates, we know that XR1 is a member of the group. Thus, we

see that Akl(X) = 0 unless XRI = Rk in which case it is unity. This representation
A (X) will be of dimensions g and have a single 1 in each column and all the rest of

the elements zero. This is called the regular representation. It is clear that the

only group element which will have a matrix with non vanishing elements along the

diagonal is A (E). In this g I 's will appear along the diagonal. Therefore we conclude

that X(E) = g; X(R) = 0.

In order to fix this representation in our minds, let us calculate the matrix
2

representing the operator C 3 for the group C 3 v. Let R1 = E, R 2  C 3, R 3  C 3

R= i-' R 5 = 2' R 6 = r3" Then

R R 1 = RZ

RZR 2 = R 3

R R 4 = 6

Z RR 5 =R 4

SRR6 = R 5

Therefore, the matrix A (C 3 ) in the regular representation is given by

01 0 0 00

A(C3) = 0 0 0 0 1 0 (2-146)

- 0 0 0 0(00 0 10 0)
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Knowing the characters of the regular representation, we can by the procedure

of the last section, determine how many times each irreducible representation occurs
th.

in the regular representation. The number of times the a irreducible representation

occurs is given by

1 *
= 1 X(E) Xa(E)g

We know that Xa(E) is equal to the dimension of the ath irreducible representation

c g n-gn n (2-148)(1 g a1 (

th
From this we learn that the a irreducible representation occurs as often as its dimen-

sion. This allows us to conclude, since the order of the regular representation is g,

that

g na2 (2-149)
a

In this manner we have shown that the number of irreducible representations of a finite

group is finite and in addition

Theorem 11: The sum of the squares of the dimensions of the irredu-
cible representations is equal to the order of the group.

We still cannot say how many irreducible representations there are for a finite

group. We now have at our disposal sufficient information to answer this question.

Let us say there are r' irreducible representations. Let us take the trace of the ma-

trices in the regular representation. From (2-148) we can write

A(R)= n r(R)
al

n nX (R) = 0 if R E (2-150)

g if R E

or since n. Xa(E)

r'

T X (E) Xa(R) = 0 if R E
a (2-151)

= g if R =E
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Now let us sum Eq. (2-144) over all a

r' r' r
a hi Xa(Ci) hj Xa(ej) = na k Cijk hk Xa(Ck) (2-152)

a a=I k =

Since n = Xa(E), using Eq. (2-151), we obtain

rl r
h i h. Xa(Ci) xa (C .k I jkk 6k1 g

S a()(2-153)

-cij 1 hlg = Cijlg

We know from relation (2-137) that cij1 = h i 6j , . Therefore,

h. h. X (C.) xa(C.) g h. 6ji, (2-154)I1 J a d Xa (C i

Dividing out the factor hi h j, we obtain

r'

X (ci) X(c) = 6ji, (2-155)

One need only consider the unitary representations of a group to convince oneself that

Xa(Ci') = Xa(Ci)*. This leads to

S(C i) Xa(C g 6 (2-156)a aaj l

iThis is a new orthogonality relation for the characters. In it we hold the classes fixed

and sum over the representations. We now rewrite our orthogonality relations (2-156)

and (2-119) slightly differently so that their similarity can be seen

Xa(C i  _Xa (Cj) = ij (2-157)
_ a X g158)

9/ Xa(Ci)V 7 P(Ci) * p (2-158)

If we now set i : j in (2-157) and sum over i and set a : p in (2-158) and sum over a,

we obtain

r % x(Ci)V"K

iXa : 1a:1 ga(Ci)*
i g 9 9(2-159)

a_ (C i )/ Xa (C)* r
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This allows us to conclude that r = r' or

Theorem 12: The number of irreducible representations of a group

is equal to the number of classes of that group.

The character systems of a group are generally presented in the form of a

character table. In this table the classes are listed across the top of the table and the

irreducible representations are listed down the left-hand side of the table. In general

a character table has the form of (2-160)

C I =E C2 . . .  . . . . . Cr
r X I (E )  xlC)xl(Cr

r2  x2 (E) xZ(C 2 ) Xz(Cr)

A (2-160)

r r Xr(E) X,(C 2 ) Xr(Cr)

For the group C3v, we can now construct the character table from the informa-

tion in (2-107). We have presented in that table three non equivalent irreducible repre-

sentations of the group C 3 . Since there are only three classes to the group C 3v, this

must represent the complete set of no equivalent irreducible representations. The

character table for this group is then

C 3v

22

E C3,C 3
z  c-1 , a2 ,o- 3

;'P i 11
1

r3 2 - 0

C. Representation Multiplication

From two representations of a group F"(R) and rP"(R) it is possible to con-

struct a new representation of the group by the following procedure. Let us define a

matrix [(R) which is written as r"(R) X r"(R), and is called the Kronecker or

direct product of the representations r'(R) and P"(R). The matrix elements of r(R)

are obtained by taking all possible products of the matrix elements of P'(R) and Fl"(R).
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i(R)(ij)(k1)  r '(R)ik r"(R)jl (2-162)

This is the element in the ij t h row of r'(R) and the kl h column. The index (ij) is

generally taken in dictionary order so that (ij) precedes (ij') when i < i' or if i = i'

when j < j'. If r'(R) was of dimension m and r"(R) was of dimension n, then F'(R)

P'(R) X r"(R) is of dimension mn. Let us first notice that if r'(R) and ',,(R)

form a representation of the group then F(R) forms a representation of the group. In

other words we must show that I(RR') = r(R) P(R').

r(RR')(ij)(kl) r(RR')ik r"(RR')j l

= E r'(R)ip r'(R')pk (R)jq "(R)q, (2-163)
p, q

I qI'(R)(ij)(pq) r(R)(pq)(ki)
(Pq)

This proves our assertion, and we see that P (R) forms a representation for the

group.

We can find the relation between the character systems of P(R) and those of

r I(R) and r"(R). Let us denote these characters by x(R), X'(R), and X"(R), respect-

ively.

X(R) = r(R)(ij)(ij ) = . r'(R)ii r"(R)jj = X'(R)X"(R) (2-164)

Thus the character corresponding to R in the direct product representation is just

given by the products of the characters of the representations entering into the direct

product.
A particularly useful set of direct products are the products of the irreducible

* representations. If Pa(R) and r"3(R) are irreducible representations of a group, we

may define P (R) x P (R). This may of course be reducible. If it is we may write

r
P(R) x r (R) = ga F'k(R) (2-165)

gap X represents the number of times the X irreducible representation occurs in the

product of the a and P irreducible representations. From the relation (2-164) and

Theorem 9, we see that

g 1 RZ xa(R) Xp(R) xX(R)* (Z-166)
5R
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These quantities have many of the properties which the quantities cijk had above.

From the definition it can be seen at once, using (2-118), that

gapx= gpak

= gpk = x 5(2-167)

= 0 unless r is equivalent to pt

= i if r is equivalent to r t

We see that we have expressed the quantities g a in terms of the group

characters. We can in a similar manner express the quantities cijk (Eq. (2-134) in

terms of the group characters. Let us take the Eq. (2-144) and multiply by

I X *f(C)

and sum over a. Using relation (2-155) we obtain

r hi x(C) h. x (Cj) *n X a (Cm ) g cijm

a 1i (2-168)

hi h r Xa(Ci) Xa(C)X (CM)
ijm g a (E)

Appendix

If we have a matrix A with elements Aij we may define a number of matrices

in terms of the elements of this given matrix.

We call A* the complex conjugate of A . Its i, jth element is A
th ij

A is the transpose of A . Its i, j element is A ji.

At = X* is the adjoint of A (complex conjugate transpose).
th *

Its i, j element is A ..
ji-

In this notation we may define some properties which a matrix may possess.

A matrix A is said to be Hermitian if At = A.
A matrix is symmetric if A = A
A matrix is skew symmetric if A -

Unitary matrices have the property that At = A-'.
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Chapter III

RELATION OF GROUP THEORY AND QUANTUM MECHANICS

In the preceding chapters we have concerned ourselves with the abstract prop-

erties of groups and their representations. This theory of groups finds wide applica-

tion in quantum theory. In order to proceed with this, we must study the effects of

coordinate transformations on functions of these coordinates.

1. Operators for Coordinate Transformations

Let us imagine that in an n dimensional space we have defined a function

f(x1 , x 2 ' ... , Xn). Here x 1 , x2, ... xn are the coordinates of a point in this space.

We may, from the outset, denote f(x 1 , x2 , ... Xn) as f(s) where xis a vector from

the origin to the point whose coordinates are x 1 , x 2, •..•, xn. We now let our coordin-

ate system undergo a real linear orthogonal transformation* of the coordinates to a

new coordinate system xlIx z'X 3 x n

Xl, RI x + R' x + + RI x1 11 1 12 2 in n

(3-1)

R +R' x +. + R' x
n nIl nZ " + nn n

In vector notation, we have

=f R ,x (3-2)

The function f(7) can be described in terms of the new coordinate system. Of course

in this new coordinate system we must describe it by a new function of these coordin-

ates. Let us call this new function Rf(xl 1 ,x 2 ' . .. xnt).

Rf(x1', x 2  ..... ,X n) f(xl, x .2' . , xn) (3-3)

or

Rf(1,) = Rf( 1Z) = f() (3-4)

We can look upon R as an operator which changes the function f in such a way that Rf

- - -- - - -R ?.-- - -
By a real orthogonal transformation we mean that R is real and unitary or R RI R
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evaluated at the point x' is the same as f evaluated at the point x . We can rewrite

(3-4) in a different manner.

) f(R'x) = R - 1 f(x) (3-5)

Here R-1 is defined by

R- f(R'-' x) = f(7) (3-6)

From (3-5) it is seen that the original function f when evaluated at the point x' is the

same as the function, f operated on by the inverse transformation R -1, and evaluated

at the original point x.

This is a concept most easily illustrated by a simple example. Imagine, in

two dimensions, the function f(x1 , x2 ) = ax1 + bx2 . The contours of constant value

for this function are ellipses and are illustrated in Fig. 3-1. We might imagine the

coordinate transform.:ation which represents a

rotation clockwise through 900.

x1 = - x 2

x2 f = x 1

The original function f(x1 x 2 ) described in terms

of the rotated coordinate system is Rf(Xl', x2 ') =

21ax2 '2 +bXl2 = 2 + bx 2
2 (Eq. 3-3). Eq. (3-5)

can be easily interpreted. This says that we have

the same physical situation if we rotate the func-
Fig. 3-1 tion (contour lines) counter clockwise through

900 and describe this function in terms of the old coordinate system as we get if we

rotate the coordinate system clockwise through 900 and leave the function (contour

lines) stationary, evaluating it at the point x' = R'x. (See Figs. 3-2a and 3-2b.)

Thus, in a manner of speaking, rotating the function is the same as rotating the coordin-

ate system in the opposite directiori.

In this way for every coordinate transformation R 'we can define a corresponding

operator R through the use of Eq. (3-4). These operators which act on the functions

multiply in the same way that the coordinate transformations multiply. Thus if R ' =

x and Sx' Z", then
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x2

xlxR-f

Fig. 3-2a Fig. 3-Zb

Rf(x) = Rf( R'x) = f(s)
SRf(x") = SRf(S'xR') =

We also have that

(SR) f(x") f(x)

Therefore, the combined operations (SR) is the same as the product of S and R. It is

obvious that the operators R are the linear operators

R(af + bg) = aRf + bRg

This is merely an expression of the fact that in changing variables in the sum of two

functions we can change the variables in each independently and then add.

In addition to this, the operators R are unitary. Thus if we have the integral

(f, g) =ff*(7) g(;) dx 1 ... dx n

the value of this integral is unchanged if we change the variables of integration. Thus

(b,g) =ff*( R't) g( R'X) dx 1 ' ... dx n

,(b, g) = f*(R'x') g( R'x') dx I . dx n
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From Eq. (3-5)

(f, g) H 1 [R - f(xJ R - g(x) dx I ... dxn

We have therefore that (f, g) = (R - f, Rg 1) or (f, g) = (Rf, Rg). This we take as the

definition of a unitary operator. We might note in passing that it is also true that

Rfg = Rf, Rg.

In this way we have defined for every real orthogonal coordinate transformation

R a corresponding operator R which is both linear and unitary.

2. Relation to Schr6dinger's Equation

Let us apply these concepts to Schr6dinger's equation. In quantum mechanics

we are concerned with eigenstates of a Hamiltonian operator H which may be defined

in a coordinate system x. We denote the operator in this coordinate system as H(x).

In general, of course, the Hamiltonian operator is a function of derivatives with re-

spect to the coordinates as well as the coordinates themselves. H(X) merely ex-

presses the fact that H is expressed in the coordinate system x. It does not mean

that the Hamiltonian operator is only a function of these coordinates.

If we allow H(X) to operate on a function t(x) we have g(x) = H(x) t(x). Using

the relation (3-4) for a coordinate transformation, we have

g = H= Rg(R'x) R R ( R
(3-7)

= RH( RX) R- - (x)

Since this is valid for all y we have the result that

H(7) = RH(R'X) R (3-8)

The effect of the operator H(x) is the same as the effect of the operator RH( R'x)R-

Under certain circumstances a change of coordinates in the Hamiltonian may leave

that Hamiltonian invariant.

H(R'x) = H(x) (3-9)

In this case Eq. (3-8) becomes

H(x ) = RH(x) R -  (3-10)
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orR H() = H(x) R (3-11)

The operator R commutes with the Hamiltonian and from this we conclude that R is

a constant of the motion. Eigenstates of our Hamiltonian can be found which are

simultaneously eigenstates of the operator R. We might consider the collection of all

coordinate transformations R' which leave the Hamiltonian invariant. We shall now

show that these coordinate transformations form a group.

Theorem 13: The collection of all coordinate transformations R'
which leave the Hamiltonian invariant (H( R' ) = H(x)) forms a

group.

Proof: It is clear that the coordinate transformation which does not change the coordin-

ates forms the identity element of the group. The product of two coordinate transfor-

mations both of which leave the Hamiltonian invariant also leaves the Hamiltonian in-

variant. This follows from H(S' R'x) = H( R' ) = H(x). The associative law holds.

That the inverse of R' leaves the Hamiltonian unchanged is also obvious. By hypothe-

sis we have H(R' R'-i X) = H( R'- X) = H(x). In this way we have proved that the

collection of coordinate transformations which leaves the Hamiltonian invariant forms

a group.

From the preceding discussion we can now conclude that the operators R cor-

responding to the R' which leave the Hamiltonian invariant also form a group. This

is called the group of the Schr~dinger equation. Let us now consider this group. For

these operators we have seen that HR = RH. Suppose we had a degenerate eigenstate

of the Schr~dinger equation

HL n = E n (n = 1 ... 1) (3-12)

(I is the degeneracy of the state) and operate on this state with the operator R. Let

us operate on both sides of (3-12) from the left with R, an operator which leaves the

Hamiltonian invariant. From Eq. (3-11) we have that

RHn = HRpn = ERJn
(3-13)

H(Rn) = E(Rsn)

From this we see that Rtn is also an eigenstate of the Hamiltonian with energy E.

Since this is the case it must be expressible as a linear combination of the degenerate

eigenstates.
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R qn = r(R)mn m (3-14)
m=l

If we now operate on (3-14) with an operator S which leaves the Hamiltonian invariant

we obtain, due to the linearity of these operators,

I
SRqn = 1 r(R)mn Spm

~t I
= r r(R)mn r(S)qm tq

m=lq= i

We also know from definition that

I

SRn = F(SR) q (3-16)
q qn q

.j From this we obtain the result that

r(SR) = r(S) P(R) (3-17)

In other words, the matrices describing the transformations of the degenerate set of

eigenstates under an operator R form a representation of the group of operators

which leaves the Hamiltonian invariant. If we assume that the eigenstates p1 .

with the energy E, form an orthonormal set, we obtain

= (Rim, Rin) = r(R)p m r(R) (p,Pq pm qn p q (3-18)

-Lr(R)* r(R) 6
p, q pm qn pq

= (Rmp r(R)pn
mp p

or

r(R)t P(R)=j

Thus we see that an orthogonal normalized set of functions leads to a unitary repre-

sentation of the group of Schr~dinger's equation.

Let us also notice that we induce a similarity transformation on the repre-

sentation r(R) if we form any other linearly independent set of I functions out of our $
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original degenerate set.

m= Snm n (3-19)
n-

Here S is a non singular matrix and S-1 is its inverse. Let us see what representa-

tions the 4's produce.

1
Rm= X Snm R n

n= 1

= X S r~ (R) pn1 nm 1 pm p

n,p,q S nm (R-pm qp q

= Zr'(R) qm q
q q

From this we see that a non singular linear transformation of the degenerate eigen-

states induces a similarity transformation on the representation

r'(R) = S -1 r(R)S (3-20)

By this similarity transformation we could completely reduce the representation P(R).
Thus, we see that there ate two possibilities. Either the set of degenerate states

corresponding to a single energy level produces an irreducible representation of the

group or through a similarity transformation the representation could be completely

reduced. In the event that the set of functions corresponding to a given energy level

generate a reducible representation of the group, we say that there is an accidental

degeneracy between those irreducible representations which appear in the reducible

representation.

From these considerations we see that much can be learned about the proper-

ties of the solutions of Schr6dinger's equation just by the consideration of the sym-

metry of the Hamiltonian. Knowing the group of the Schr6dinger equation allows us

at once to state that every eigenstate of the Hamiltonian can be chosen in such a way

that it, along with the other eigenstates of the same energy, generate an irreducible

representation of the group. This, of course, tells us the behavior of the eigenstates

under the various symmetry operations involved. In general, this information proves

quite useful, but in order to know the actual positions of the energy levels we must

go still further and actually solve the equation. This is a formidable task which can

only be carried out by approximate calculations either by perturbation or variational

techniques. Whereas we have learned something of the general nature of the solutions
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of Schr6dinger's equation from group theoretical considerations we have not exhausted

the usefulness of the application of group theory to quantum mechanics. Just in the

sphere of the approximate calculations group theory plays an important role in the

simplification of the calculations. Since we know our solutions to Schr6dinger's equa-

tion generate irreducible representations, we would generally find it to our advantage

to start any approximate calculation by making wave functions which at least have the

proper symmetry behavior under the group of Schr5dinger's equation. In the next

section, we shall develop powerful tools which enable us to simplify many of the

methods used to calculate solutions of the Schr6dinger problem.

3. Bases for Irreducible Representations, Hypercomplex Numbers and

Projection Operators

Any set of functions fl f 2.' -" f1 which, under the operation of some element

of a group j' go into linear combinations of one another is said to form a basis for

the representation. Thus if

I
Rf. = 1j r(R)ij f. (3-z1)

The functions f. are said to form a basis for the representation F(R). The particular
1 th

function f. is said to transform according to the i column of this representation.

If rl(R) is an irreducible representation then the functions fi are said to form a basis

for an irreducible representation. The functions included in a basis are referred to

individually as partners in the basis for the representation. In this terminology, we

see that the solutions of Schr~dinger's equation can be chosen to form bases for ir-

reducible representations of the group of Schr5dinger's equation. In case there is

no accidental degeneracy, the representation for which the degenerate eigenfunctions

form a basis will be irreducible. In the event of an accidental degeneracy, the repre-

:K sentation for which the eigenstates of a given energy form a basis is a reducible rep-

I rresentation. It can be completely reduced into two or more irreducible representa-
tions. If this is the case the functions corresponding to the same eigenvalue can be

broken up in the same way as the matrices. We could label the degenerate eigen-

functions

fill fl1 '"'flJl f l 1 ...' f 2j2; fill ' f 'j, (3-22)

Here the functions fill - f  form a basis for one of the I irreducible representa-

tions which is contained in the reducible representation. The functions between the

semicolons in (3-22) transform amongst themselves in an irreducible manner. This

is merely a reflection of the blocking off of the matrices in the representation when
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it is put in its completely reduced form.

As we mentioned at the close of the preceding section, we shall in general

only be able to solve Schr~dinger's equation approximately and we shall find that

simplifications arise when we can confine our attention to approximate eigenfunctions

which transform irreducibly according to the group of Schr6dinger's equation. In

order to make functions which transform in the suitable manner, we shall make use

of entities called hypercomplex numbers which we shall find act like projection op-

erators. They take out of any function that part of it which transforms in a specified

manner.

We found it convenient in our discussion of class multiplication to introduce

a sum of elements taken from a given group. We might generalize this concept. Let

us assume we had a group of order g with elements R I = E, R 2 , ... Rg and we

formed an entity

g
p = aiRi = aIR 1 + a 2 R 2 + ... agRg (3-23)

il

Here a, ... a are in general complex numbers. This quantity is called a hyper-

complex number. It is clear that the sum of two hypercomplex numbers is again a

hypercomplex number. Thus if

. R

p + I = Z(a i + bi) R i  (3-24)

The product of two hypercomplex numbers is again a hypercomplex number. piq is

given by

pq = ab. R.R. (3-25)

Since Ri and R. are elements of a group the sum on the right-hand side of (3-25) is

once again a sum over group elements. The coefficient of R in pil would just be the

sum of aibj for all i and j such that R iR j = R . Under multiplication the hypercom-

plex number (1)E forms the identity since

(1)Ep = XaiERi = p

If r(R) are the matrices of dimension n representing the group 9, then we

can form particularly useful hypercomplex numbers by forming the numbers
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Pij = Z r(R) i R (3-Z6)R
Here r(R)t is the representation adjugate to R (R). That is r(R) t = (R-l). Let

us multiply the hypercomplex number pij from the left by S, a member of the group

SPi. = r(R)t. SR (3-27)
R

If we let SR R R = S 1 R' we obtain

SPij= - r(S-1R') R'R R'

Z r(s -  r(R)t. R'r=( I)k )kj

R' k (3-Z8)

= Z X r(S)ki r(R')k. R'
k R'

= ~ r(S)ki Pkj
k

Thus we see that the hypercomplex numbers p I j, p2 . . pnj (for all j) transform

amongst themselves as partners in the representation r(R). Thus we could put the

hypercomplex numbers in a matrix array.

Pll P12 "'' Pin

P2 1 P2 2 ''" P~n
(3-29)

Pnl Pn2" " Pnn

The hypercomplex numbers in any column when multiplied by an element S of

transform as basis elements for the representation l(S). The functions pil, Piz

Pin (across any row) have the same transformation properties even though they are,

in general, distinct. Thus

S Pij = Z r(S)k i Pkj
k (3-30)

S Pil = Z Ir(S)ki Pki
k

We see from this that the hypercomplex numbers pij'and pi, transform in the same

manner.
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In particular, we could form hypercomplex numbers from irreducible repre-

sentations in the following way

i = t R (3-31)

Rij r(R) R

If Pla(R) is unitary

Pij R -'(R)ij R (3-32)
R

Here ra (R) is the a t h irreducible representation of the group These particular
hypercomplex numbers have some interesting properties.

Consider the product pa p where a and P denote irreducible representations

of dimension na and n, respectively. In this case

a = 1 r (R) .r(R' t RR' (3
k R R' kiR(-

If we let RR' R (R' = 1 R- I)

Pa 3 ,R t r(-lI~ R"
~ijk1 R RI a ii P( R'ki

-- XX -7 R R- t r(Rt R
R R' m l _ L r()~F( km ~ ml

- X Yr(R)t r (R)mp
Rr a iij k MR m

Using the orthogonality relations (Eq. (2-113) of Chapter II)

np
a 6 6 6

PijPk= ml n a3 im kj mlM~l (3-34)
[ - n 6 ap 6 kj ~~

6 p
n pkJi

kL vanishes unless a = p and even in this event the product van-Thus we see that P ij p ki

0 ishes unless j = k. These hypercomplex numbers are particularly useful if we draw

them from the group of Schr6dinger's equation.

We recall that the group of unitary operators R which commute with the

Hamiltonian was called the group of Schr~dinger's equation if these operators cor-

respond to real orthogonal coordinate transformations. These operators act on func-

tions of the coordinates. We might imagine that for the group of Schrdinger's equa-

tion we have the irreducible representation r"(R). We could then form the hyper-

complex numbers (3-31). These hypercomplex numbers are operators on the functions
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of coordinates. Let us see what effect they have on an arbitrary functiofil of the co-

ordinates c(x 1, ... , X

= Pij4 = r (R)t. R (3-35)1 3 R i 1

What we are doing here is to take the function 4 and form the g functions R4 from this

function (as R runs over the group ) and then form linear combinations of these g

functions with coefficients taken from an irreducible representation. The g functions

R4 may or may not be linearly independent. If we operate on 4) ia with any operator S
13

of the group of Schrodinger's equation we obtain, by use of (3-28)

S 2 ra(S)ki 4 kj (3-36)

a' k
Thus the function ¢. p.. a) transforms as a basis for the a irreducible representation.

The partners in this basis are 4lj' ,2j' " na, j" Thus, from a function 4) we can

n
make n functions corresponding to the a irreducible representation. These func-

tions are

(I IL In

a

(3-37)

aa aa
n 1f n 2' On n

The functions in any column form partners in the basis for the a irreducible repre-
thsentation. Each column forms a basis for the same representation, the at . These

n 2 functions may or may not be linearly independent.

The operators pija take an arbitrary function and
i

project out of it that portion of it which transforms as a

partner in the basis for the a irreducible representation.
They can be thought of as projection operators. They are

useful when it is desired to form from a given function

one which transforms in a prescribed manner. This is

often necessary in simplifications of approximate treat-
y ments of Schr~dinger's equation. In order to clarify the

behavior of these operators let us study a simple example
\ taken from the group C 3v'

V3 ----- -- We might imagine a function in two dimensions

Fig. 3-3 which is situated around the vertex of an equilateral tri-
angle as illustrated in Fig. 3-3. The contours of constant
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value are shown in the figure. The function has the property that under the operation

a1 (reflection through a line passing through 1 and perpendicular to the line joining

2 and 3) it goes into itself. By applying all the operations of the group C 3v to this

function we arrive at the following three functions:

3 1 = 13 = 2

C3 2 = ' 2 1 = 3 (3-38)

Ep1  = i

These three functions form a representation of the group C 3 v and this representation

is of dimension 3. Let us now consider the effect of applying the projection operators

for irreducible representations on this function ," We shall take our irreducible

representations as given in Eq. (2-107) of Chapter II.

Let us consider first the projection operator associated with the identity rep-

resentation. From (3-31)

I.P 1 = E + C3 + + 2 +  + 
T'

P11  E+ 3+C 3  +(r2+3

Using (3-38) we have

1= z4 + 2z + Z3 = z(4l + + '3)

By the application of the operator p, 1 we have formed a function pll 4l which trans-

forms as a basis for the identity representation of the group C 3v' In this case it is

just the sum of functions like 1 centered about the vertices 1, 2, and 3 of the equi-

lateral triangle.

Now consider the second irreducible representation on (2-107) of Chapter II

p2 = E + C 3 + C3 - 1 -2% - (3
11
2

Pll = 1 + z + 3 - - -3 -

=0

From this we see that if we try to project out of l a part that transforms as the rep-

resentation r 2 (R) we cannot do this. In other words, 4I does not contain the second

irreducible representation.

For the third irreducible representation we can form four projection operators
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3 1 1 2 1p E C - C3  1 2 3

3 /3 VTz _+
1 2 3 - 2 - 2 2 + 3

3 /7 3 + /3 C 2 / +  V 3
P 21  2 C3  2 T 2 3

3 E 1 C 3 -ic 3
2 +i1 1P22 =E - 2 C 3 + - 2 -T 3

Applying these to the function 4I we obtain

3 +
Pll l = 1 -g0Z - - 4)1 +4 200) = 0

3 /"T 3TITP427 = 2 23 , 742 '"2(2 -3)

3 - 3 03 3 0TP' 2l1 = 2 4 ) +n 4  
-~ '/ 3-0'

P ~20 2 2

3 1 1 1 1
P 1 = 0 - 2- 43 + -l - 4)3 - f = 24)1 - - p3

What have we obtained through the use of these projection operators? We see that

the irreducible representation r 3 (R) is contained only once in this function 4,. The
33

partners in the basis for the third representation are the functions p124)1 and p22  lor /3( 2 - 4)3) and 241 - - 4)3" This is what we expect from relation (3-36).

Let us now see if this checks what we might expect by considering the number
of times the irreducible representation generated by the functions 4y ' and 4)3 con-

tains the various irreducible representations of the group C 3 v. Let us call the re-

ducible representation generated by 4)1' ' and r3 r(R). The characters of this

representation are easily seen to be

yx(E) = 3 X(o- 1 ) = 1

x(C 3 ) = 0 X(0-2 ) =1

X(C 3
) = 

0 X(o-3 ) = 1

Using the result of Theorem 9, we find that the number of times the various irredu-

cible representations are contained in r(R) is given by

c 1 K x(R) Xa*(R)
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c = [3(l) + 0(i) + 0(i) + 1(1) + (1)(1) + 1(1

cli C( l + 1(-1

= : .[3(1) + 0(i) + 0(1) + (1)(-1) + i(-i) + i(-]

Cz =0

c3 = ( (z) + 0(-1) + 0(-1) + l(0) + 1(0) + 1(0

03 1

Thus the first irreducible representation is contained once in the reducible representa-

tion. The second is contained not at all and the third is contained once. This, of

course, is just the result which we obtained through the use of our projection operators.

We mentioned in connection with projection operators that they extract that

portion of a function which transforms according to a given irreducible representa-

tion. It is quite informing to look into this property further. Suppose we had a group

with r irreducible representations. Then we could form the g (g is the order of

the group)

p a r )* R a r
-ij = ( n i,j = I ... , n

Now let us consider an arbitrary function and take just the projection operators

arising from the diagonal elements in the irreducible representation and apply them

to 4.

ii = api * (3-39)

1' .th
As i goes from I to na we select functions which transform according to the i h

column of the a irreducible representation. (In general, as we have seen, Ci is

not a partner in the same basis as ) Let us now add up the functions fi. over a

and i multiplying each by n/g.

n ng aiiiiR
, gR ci (3-40)

-- a YCX(R)*R

R a R

Using the result of Eq. (2-150) of Chapter II, we obtain
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ni°
• i E@ =

n, (3-41)

What we have done by the use of these projection operators is to decompose an arbi-

trary function into a sum of functions which transform as the various irreducible

representations of the group. This is very familiar to us. When we decompose an

arbitrary function of x, y, and z into a sum of spherical harmonics of the angular

spherical coordinates times functions of the distance from the origin, we are doing

the same thing.

f(x, ,Zm

lm

In this case fim(r) eim Prn(cos 0) transforms in a specified way according to the en-

tire rotation group in three dimensions. (The group consists of all rotations about

the origin.)

We do not always have at our disposal the complete matrices of an irreducible

representation of a group. In general, we have only the character table. This is

sufficient information to construct projection operators which do not give as much

information as the operators (3-31) but which do give some useful results. Consider

the operator

SXa*(R) R
R

In terms of these operators, Eq. (3-41) can be rewritten as

n

Thus, the function ta contains the sum of all parts of the function p which transform

as the a irreducible representation. Thus, these character projection operators

enable us to determine immediately if an arbitrary function contains any portion

which transforms as part of a basis for the a irreducible representation. Since

character tables are, in general, readily available for the simple groups, these

projection operators prove quite useful.

We can go even further into the theory of projection operators and derive re-

sults useful to quantum mechanics. First, let us form projection operators for the

a irreducible representation
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Pa r RF(R):j
RPa j

Now imagine we had a set of functions which transform as partners in a basis for this

representation; f 1' ...' fn
n

Rf1 = r a (R).. fj

We could now apply the operator P. to f.

l' ij R

ri -- a (R)ij rQ(R )kj fk
R k

Using the orthogonality relations for the matrix elements of an irreducible representa-

tion, we obtain

Pa f' = 5k ri-- fk
ij j aikk

- f.
n a

aa

We see that pa j when applied to fj gives a multiple of fi (another partner in the same

irreducible representation). These operators appear as "step" operators which take

us from one partner in an irreducible representation to another.

Now let us consider the integral (inner product) of the product of two functions

pf and rig where p and -q are hypercomplex numbers.

(pf, 1g) =Jf(pf)* g dx 1, dx R

(pf, 1g) = [ aR bR,(Rf, R'g) R bR
R, R'

From the unitary nature of the operators we have

(pf, ng) = -R a bR,(f,R-1 R'g)
R, RI R

If we define qi = a R, we have

(Pf, Tig) =(f, P, g) (3-43)

In particular, if
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= Pij r(R) R
R

71 P r (R * R
ij R P ki

where rPa and r are unitary irreducible representations, we have

(P fPP1 ) P
(Pijf Pg) (f ij pki )

But

at= R (R). R = 
R r(R- 1),j R = r (R)i" R = a

=j R a R a R a. 3~~ji

We therefore obtain

(P if, P 1 g) = (f Pj Pkjkg)

Using (3-34) of this chapter

(3 fkg): 5ap kj g) (3-44)

We can now prove a useful theorem.

Theorem 14: Functions which are part of bases for different irre-

ducible representations of a group j and functions transforming

according to different columns of the same irreducible representa-

tions are orthogonal.
Proof: Let a fa form a basis for the a irreducible representation and gl , ...

froof Let
P form a basis for tle P irreducible representation. From the relation (3-4Z) this

can be written as

(gip f - ng V gi' Pa f)

From Eq. (3-44) this becomes

(g, f_) - na g 6 (g, Pa f)
gZ np n ap ij I 333

We have proven our theorem. g p and faare orthogonal if a p. They are ever

orthogonal if a = P if i j. We can also see that if a = ', i = j

(gia fa) = (g', fa) for all i and j corresponding to a given a (3-45)
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This is true since

n 2

(g, f') = (p g" a f C)

' i g2  1 ii '

g (g a aj

= (ga% f a

We generally have the problem of finding matrix elements of our Hamiltonian

H between functions. In this connection we have an additional theorem.

Theorem 15: For the group of the Schr3dinger equation (using the

notation of the last theorem)

ii i CL 0

unless a = 13, i = j; and in addition

(g', Hf") = (g, H f")
I I

for all i and j corresponding to a given a

Proof:

(gi, Hf) -
n P(Pigi Hpa.f )

g
- a p(g PiH paf)

Since all the operators in the group commute with the Hamiltonian

rP H H HP

therefore

(gi, H f ) -
,  Pa fCL

Sg2  1

n

H 6= V H p a )dtemto fTerm1,w
g CLP i' ii

In an analogous way, using the fact that p. H H pc. and the method of Theorem 14, we
13 1

can prove
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(g", H f ) = (ga, H fa) (3-46)

We have proved this for the Hamiltonian operator H. It is clear that the same theorem

is true for any operator V which is invariant under the same symmetry operations as

the Hamiltonian.

From these discussions we can gain a greater insight into the degeneracy of the

solutions of Schr6dinger's equation. We recall that the solutions of Schr3dinger's equa-

tion could be chosen so that the eigenfunctions all form bases for irreducible repre-

sentations of the group of Schr~dinger's equation. Functions transforming as partners

in a basis for the same irreducible representation had the same energy. In the event

two irreducible representations had the same energy, we said that we had an accidental

degeneracy. Let us assume that we had solutions of Schr~dinger's equation H = Es.
an a n

Let us denote the solutions by 4,O. By this we mean that a, transforms according
thto the i column of the a irreducible representation. n denotes which energy level we

are discussing. In general, there will be more than one set of functions which are so-

lution of Schr~dinger's equation which transform according to the a irreducible repre-

sentation. n is the index which distinguishes these. (In the case of the hydrogen atom

n would denote the principle quantum number.)

Let us now apply a perturbation V which is invariant under the group of Schr6-
dinger's equation. We could attempt to find the eigenfunctions and eigenvalues of the

new Hamiltonian H + V by expanding the perturbed wave function in terms of i n

setting up the matrix of interaction. From our discussion in the last paragraph we

notice that the matrix element (Wb n(H + V) i  ) will vanish unless a = a', i = i'.

Thus to find the eigenvalues all we need do is solve the secular problem between func-

tions transforming as the same column in the same irreducible representation and then

do this for all representations and columns in this representation. There is an addi-

tional simplification since

(,'n(H + V) ia',n') = (,a,'n(H + V) ,a'n')

From this we see that if we focus our attention on a particular irreducible representa-

tion the matrix of interaction is the same for all functions transforming according to

one column as it is for functions transforming according to any other column. Thus

the eigenvalues and eigenvectors of these two problems are the same. Thus, if

a, n c a, n

ni = Zca, n Pi

is a solution to the perturbed problem, so is
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an c a , ,a, n

,a, n a,n

From the transformation properties of the q's we see that 4#i and 4j are partners
in the basis for the same irreducible representation and, of course, correspond to the
same energy level. From this we see that any symmetric perturbation cannot split
the degeneracies inherent in a given irreducible representation. All the perturbation
can do is to shift the energies about. This is not the case for an accidental degeneracy.
The matrix of interaction affecting one irreducible representation corresponding to a
given energy level of the unperturbed problem can be quite different from that corres-
ponding to another irreducible representation with the same unperturbed energy. This
type of degeneracy can be split by a symmetric perturbation. This is the reason for
calling it an accidental degeneracy. It depends not on the symmetry of the Hamiltonian
but on its more detailed characteristics.

This is about as far as we can carry the general discussion of the group of
Schr6dinger 's equation without looking in detail at the form of specific Hamiltonians
and discussing in detail the groups of these Hamiltonians.

In many problems of atomic, molecular, and solid state physics, it is conven-
ient to start with a spin free Hamiltonian representing the interaction of electrons with

each other and with the nuclei. Let us deal with an n electron problem. Let us denote
the position of the a nucleus with charge z by R and the position of the ith electron
by r. The Hamiltonian for this problem we shall take to be

n 22 +1 2 + + 13-zz

i 2I a a

(This Hamiltonian is in atomic units. ) The first term is the kinetic energy of the elec-

trons, the second is the kinetic energy of the nuclei. The last three terms represent

the Coulomb interactions between the electrons with each other and the nuclei and the

Coulomb interactions of the nuclei amongst themselves. This Hamiltonian has certain

invariant properties. We notice that it is invariant under interchanges of the coordin-

ates of the electrons. It is also invariant under interchanges of the identical nuclei.

Any rotation of the coordinates of all the particles or inversion through the origin will

leave the Hamiltonian unchanged. Since spin coordinates for the electrons and nuclei

do not appear in the Hamiltonian it is also invariant under interchanges of the spin co-

ordinates of the electrons. We have not exhausted the invariant properties of this

Hamiltonian. We shall not go further in enumerating the invariances of this Hamilton-

ian since in the problems of atomic, molecular, and solid state physics we often con-

cern ourselves with approximate Hamiltonians in which we hold all the nuclei fixed and

just solve for the electronic wave functions and energy levels which arise from this
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Hamiltonian. In this case the Hamiltonian (outside of an additive constant) is given by

HZ~~. 2 +~ in ZZQ,(3-48)

We shall now consider in detail the groups associated with this Hamiltonain. It is invari-

ant under interchanges of the space coordinates of the electrons. These operations are

permutations of n objects and there are n! such operations. Secondly, it is invariant

under any rotation, reflection or inversion of the coordinates of all the electrons which

would leave their positions relative to the identical nuclei involved unchanged. Thus,

if there were identical nuclei located at the corners of an equilateral triangle, the Ham-

iltonian would be invariant under the group C 3 v. Any operation of this group applied to

the total electronic system would leave its energy unaltered. The Hamiltonian is invari-

ant under permutations of the spin coordinates of the various electrons and also under

any rotations of the spins of all the electrons since spin coordinates do not appear in

this Hamiltonian.

It is clear that all the permutations of the space coordinates of the electrons

form a group as do the reflections, rotations, and inversions which send identical nu-

clei into each other. It is also clear that if we call the permutations of space coordin-

ates PS and the reflections, rotations, and inversions R, that PSR = RP s . The order

in which the permutation and rotation are carried out is immaterial and we could say

the group of permutations of space coordinates commutes with the group of symmetry

operations (rotations, etc. ). If we call _J the group of spatial permutations and 9 the
group of symmetry operations, the Hamiltonian is invariant under a group.j x 9. The

elements of this group are just the products of pairs of elements taken from4 and q.

This is called the direct product of these two groups. Now let us take the direct prod-

ucts of the matrices in the irreducible representations of 4r and

r Fa (P s R) = ra ( P s ) x P (R)

It is easy to show that this new set of matrices ra (P s R), when defined for all products
of Ps and R, will form a representation of the groupJ x q . We can also show that
this representation is irreducible. Let us use Theorem 10 to prove this. If 4 is of

the order g' and is of the order g, then x q is of the order gg'. If we take the

sum of the squares of the characters of the matrices R' (psR), we obtain

X Ix (PsR)12 
- IX,(PS)12 Ixp(R)1 2

P R P R

= x Z a(PS) I X O(R)1 2
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This yields

Z IX (PsR)1Z = gg'

PS, R

Thus, we have shown that the products of the irreducible representations of the com-

muting groups yields irreducible representations of the product group. It is not diffi-

cult to show that we exhaust the irreducible representations in the group J' x in this

way.

Similarly, the group of spin permutations commutes with both e and . We

shall call these spin permutations Pr. We could now define a group consisting of the

products of the three groups above and find the irreducible representations of this

product group from the irreducible representations of the three groups. In general,

we see that in specifying the irreducible representations of the entire group of Schr6-

dinger's equation we can specify the irreducible representations of the groups whose

products go into making up the group of Schr~dinger's equation. This enables us to

discuss one at a time the individual groups that go into the group of Schradinger's equa-

tion. In the next chapter we discuss the permutation groups of spin and space coordin-

ates. This is the most general invariant property of the Hamiltonian (3-48). The

groups which send identical nuclei into each other depends on the precise location of
the nuclei in a problem and we shall restrict our discussion of these groups to a later

section.
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Chapter IV

PERMUTATION GROUPS AND THE DIRAC VECTOR MODEL

In the last chapter we saw that the Hamiltonians which we were considering

were invariant under permutations of spatial and spin coordinates. In order to study

the consequences of this invariance on our eigenstates, we shall need a familiarity

with the symmetric groups (all permutations of n objects). There is a wealth of litera-

ture on the properties of these groups and their irreducible representations. We shall

not go into the properties of these groups in detail. A few of the more general proper-

ties of the symmetric group are all that we shall require for our purposes.

1. Permutation Groups

In Chapter I, we introduced the concept of a permutation. For the first n in-

tegers, a permutation was defined as the operation which rearranged these numbers.

The operation was specified by the symbol P and defined by

p 1 ... n (4-1)
aa a n

The meaning of this symbol was that 1 was replaced by a 1 , 2 by a 2 , ... nby a.

nn1a I 1. a n were distinct integers taken from 1 ... n. The order in which we write the

columns is immaterial. Thus

12 n 2 5 ... n
ala a aaa an

The inverse of a permutation P is given by

-l (alaZ ... an) (4-2)

The product of a permutation S and a permutation P

S=1 2  n) (ala2 ... an)
(bb ..  b cc 2  ... cn

is given by

SP (ala2 ... an) (1 2 . n ) 1 2 ... n )I
SP -C Cn'ala.. an lz C

It is easily verified that the operations effecting the n! rearrangements of the integers

1 through n form a group called the symmetric group of degree n which has n! elements.

Of particular interest are the cyclic permutations. Thus, if we have q objects,

a cyclic permutation is
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1 2 3 q)
23 4 .. q1

In other words, the first object is replaced by the second, the second by the third, etc.,

the q h being replaced by the first. It is convenient to use a special symbol for the

permutations of this kind. We denote this permutation by (l 2 3 ... q). It will be under-

stood that by this symbol we mean

12 3 . .. q)
(234 . .. q 1

It will be also understood that (1 2 3 ... q) = (2 3 4 ... q 1), etc.

The concept of a cyclic permutation allows us to decompose our permutations

in a meaningful way. We can decompose any permutation into cycles. Any permuta-

tion will then appear as a product of commuting cycles with no common integers. We

could carry out this process as follows: Let us start with any object I" 11 is replaced

by ±Z' we can then find that ±Z is replaced by 3". Eventually we must end up with some

object being replaced by ji" In this way, at least part of the effect of the general per-

mutation is given by the cycle (l' jz " " " ) . Here r ,< n. If this does not exhaust the

number of objects, we can choose an element not in the set p. .. 4. and proceed in a

similar way. This will give us another cycle which we might take to be X, X2 . Xs).
Now s + r < n. We can carry out this process until we exhaust the n objects. We can

then write the effect of our permutation as ( I' I? . r)(kl Xs)(.'. ) ... (Ni ' Yq)
where r + s + ... + q = n. In other words, by this method of decomposition we have

written the permutation as a product of disjoint cycles. The order of the cycles does

not matter since the cycles act on different objects.

As an example let us decompose the permutation

12=(I34567

= 4 3 2 5 7 61

into cycles. We see that 1 is replaced by 4, 4 by 5, 5 by 7, and 7 by 1. Thus, the

first cycle is ( 1 4 5 7). This leaves 2, 3 and 6 left over. 2 is replaced by 3 and 3 by

2. This leaves 6 over which is replaced by itself. We have that

2 3 4 5 6 7 (1 4 5 7)(2 3)(6)

In this way, we see that any permutation can be decomposed into cycles. It is clear

that the decomposition of a permutation into cycles is unique since different products

of cycles correspond to different permutations. (In this last statement, we assume that

two products of disjoint cycles are the same if the only different is in the order of the

factors.)
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Let us assume that a permutation from the symmetric group of degree n is de-

composed into cycles. Let us say there are X1 cycles of length 1, X2 cycles of length

2, etc. there being Xn cycles of length n.

nn

n = + 2X 2 + 3X3 +... nX

In the example given above there is one cycle of length one, one cycle of length two,

and one cycle of length three. In this symmetric group of degree 7 there is more than

one permutation which has one cycle each of lengths one, two, and three. The permuta-

tion (1 2 4 5)(6 7)(3) is one of this type. It is easily seen that for the symmetric group

of degree n with XI cycle of length 1, etc. up to kn cycles of length n, there are

,In. (4

X1 X X2 kr (4-3)
1. 2 r

permutations having what we shall call the same cycle structure (the same number r

of cycles of each length). We can show that the permutations with the same cycle struc-

ture belong to the same class.

Let us suppose that we had two permutations with the same cycle structure.
Both of these can be decomposed in the same way into cycles. Let us say that they

both have r cycles of lengths X1, Xz ... Xr

P (a 1 a2  ... a )(b 1 b2  - b ) ... (d 1  d d )

1 "' bX) (dl' dyr)

Consider the permutations

a' a,' b 1' . .b d d'r

a a . . " b d d

2 r)a.abl. . b X " ' ". d I ' d k r

T-I =( a " ra, ... a.1 bl, .. bk' ... dl1 . .

We can verify by direct multiplication that

T PT=P'

In this way, we have shown that permutations with the same cycle structure belong to

the same class. The number of permutations in a given class is given by the formula (4-3).
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The number of different classes is the number of different cycle structures.

Th is is seen to be the number of ways in which the number n can be decomposed into

a sum of positive integers. For the symmetric group of degree 4, for example, there

will be 5 classes

4=4
4= 3 + 1

4=2+2

4=2+1+1
4=1+ + 1+1

Since the number of irreducible representations is equal to the number of classes we

have the result that the number of irreducible representations of the symmetric group

of degree n is equal to the number of ways that the number n can be decomposed into

a sum of positive integers.

In general, we shall omit in writing the cycle structure all cycles of length 1.

It will be understood that the missing integers are left unchanged. For example

(1 4 5 7)(2 3)(6) = (1 4 5 7)(Z 3)

Cycles of length 2 are called transpositions. All the cycles of length 2 taken

together form a class of the symmetric group. Every cycle can be decomposed into a

product of transpositions.

(alaq2 ... aq (aIa2)(aza 3 ) ... (aq.l aq)

In this way, any permutation in the symmetric group can be decomposed into a product

of transpositions. This decomposition is not unique. It turns out to be the case, how-

ever, that all permutations are of one of two types. A permutation can be decomposed

into an odd number of transpositions or it can be decomposed into an even number of

transpositions. We shall now define what are called even and odd permutations and

show that even permutations can be decomposed into an even number of transpositions,

and odd permutations into an odd number of transpositions.

Consider the product of the differences of the independent variables x 1 , x 2, •.• . n

(x 1  X2 )(x 1  - x 3 ) ........... (x 1 - xn)
X (X 2 - X3)(X 2 X4) ... (x2 - xn) (4-4)

.x (x 3  - x4 ) ........

X (xn - xn)
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If we permute the indices 1 through n, it is clear that there are two possibilities. We

either get back the original form (4-4) or we get the negative of the form. Permuta-

tions which send the form into itself are called even permutations. Those which send

(4-4) into its negative are called odd permutations. From this we conclude at once that

a product of two even or two odd permutations is again an even permutation and that the

product of an odd and an even permutation is an odd permutation. By applying a trans-

position to the form (4-4) we see that it goes into its negative. Transpositions are there-

fore odd permutations. It is clear then that any odd permutations must be decompos-

able only into products of odd numbers of transpositions and even permutations are de-

composed into products of even numbers of transpositions. We can also conclude from

the process of decomposing cycles into transpositions that all permutations in a given

Il class must be either all odd or all even. Since a permutation and its inverse have the

same cycle structure (therefore belong to the same class) the inverse of an cdd per-

mutation is an odd permutation and the inverse of an even permutation is an even per-

mutation.

Since the product of two even permutations is again an even permutation we can

conclude that the collection of all even permutations in a symmetric group is a subgroup

of that symmetric group. This is called the alternating group. It is,of course,an in-

variant subgroup, since for any even permutation P, T P T is also an even permuta-

tion. We can see that the alternating group contains half as many elements as the cor-

responding symmetric group. Consider PP' where P is an odd permutation. If we let

P run over all even permutations, PP' must run over all odd permutations. Every odd

permutation must appear in the collection of permutations PPI since we can solve P'
-1pI which must be an even permutation and hence a member of the alternating group.

This information is sufficient to gain some insight into the irreducible repre-

sentations of the symmetric group. One representation can be found at once namely the

symmetric representation r 1 (P) = 1. If we represent all elements in the alternating

group by + 1 and all the odd permutations by - 1,we also get an irreducible representa-

tion of the symmetric group. We denote this representation by r 1 '(P) and call it the

antisymmetric representation. There are no other one-dimensional representations

of the symmetric group. We can see this most easily by writing every permutation as

a product of transpositions. Every transposition can be represented by either one or

minus one. (All transpositions belong to the same class, hence for a one-dimensional

representation they must have the same matrices representing them. ) They must be

represented t 1 since the square of any transposition is the identity element. Since

any permutation can be written as the product of an even or an odd number of permuta-

tions depending on whether the permutation is even or odd, it is clear that the two one-

dimensional representations we have given above exhaust the possibilities.

All other representations of the symmetric group must have dimension greater
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than one. Let us assume that we have an irreducible representation r (P). By form-
ing the direct product of this representation with F'1I '(P) we form a new representation

of the same dimension

ra'(P) = rCa( P ) x rl ' ( P )  (4-5)[

In this representation all the matrices representing the odd permutations are mutliplied

by - I and all the matrices representing even permutations by + 1. For the symmetric

group of degree n we have from Theorem 10

S1xa(p)I =n'

P

From this we conclude that

SIx '(P) 12 
=n

P

Therefore, the representation (4-5) is also an irreducible representation. For every

irreducible representation r (P) of the symmetric group there is an irreducible rep-

resentation r' '(P) = ra(P) x r,'(p) which we shall call the associated representation.

This by no means exhausts the knowledge of the properties of the irreducible

• !representation of the symmetric group. These groups have been studied in great detail

and there is a wealth of knowledge concerning their properties and irreducible repre-

sentations. For our purposes we shall not need for the present any further properties

of the symmetric group. We are now in a position to apply our knowledge of the sym-

metric group to the eigenfunctions of Schr6din.ger's equation.

2. Permutations of Spin Coordinates

" We recall that associated with every electron is a spin angular momentum.

For an electron this angular momentum can have a z component of either -h or- -h.
By this we mean that if we form the usual angular momentum operators s = s +s 2 +

x y
s and s we can, for a particle of spin 1 (for example, an electron) find eigenstates

of these operators which we shall denote by a(i) and P(i), and which have the properties

that

2. 21 3
s a(i) = h () a(i)

s~ P(i) h z 21 Wpi

s a(i) =+ h Q(i)z

sz(i) = - 1,h P(i)
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By the argument i of the functions a(i) and P(i) we mean that this corresponds to the

spin of the ith particle. It is sometimes convenient to define additional operators listed

below

Tx= CE) sx
TY = (-s

'x x

-y Sy +

S = S +is2 X y

+ 
5 = s -is

+ y

a
-  

x -IT-
Xy

The reader may recall that from the properties of angular momentum these operators
have the properties

+

Ta =2a T0CL
\ -+ =2p -a =-

z

T 0

The functions a(i) and P(i) form a complete set as far as the spin coordinates of an elec-

tron are concerned. Any function of all the coordinates (space plus spin) of an electron

can be expanded in terms of these functions. Thus

S'+(x Yi, zi) a(i) + -(x i , Yi, zi) P(i)

where 4+ and 4- are arbitrary functions, is the most general function we can have of

all the coordinates of an electron.

For an n electron problem if we took all possible products of the spin eigenfunc-

tions a(i) and P(i) of the individual electrons we would have a complete set as far as the
n

spin properties of the n electron problem were concerned. There are 2 such product

functions. Any function of all the coordinates of all the electrons could be written as.

a sum of these Zn functions each multiplied by a function of the spatial coordinates of

all of the electrons. Each of these 2 n spin product functions is an eigenstate of an op-

erator
n

Sz = X S
i=l
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with eigenvalues ranging from -nb to - nh. Since each of our one-electron spin

eigenfunctions are eigenstates of the operators szi the eigenvalue of the operator Sz
when acting on a spin product function will just give as eigenvalue the sum of the eigen-

values of the particular one-electron spin functions which made up the product. Thus,

if there were m particles with spin + - and n - m particles with z component of spin

-TheegenvauefSfr this spin product function would be m -Zn. We shall denote

by M S the eigenvalues of the operator Sz and by msi the eigenvalues of the operator for

the z component of spin angular momentum of the ith particle. We have therefore for

a spin product function

M S = msi = m - n

We can see that for an n electron system the number of spin product functions with a

z component of total spin M S , is

n. n!
(n - m)! m! n n( + MS)p (n _ MS)!

Even though these 2 n spin product functions form a complete set as far as spin proper-

ties are concerned it is more convenient to form linear combinations of these spin

product functions so that they are eigenstates of the total spin operator

S2 = (sx 5 x. + sy +s .)i "Y j z.
1, J 1. J J

In doing so we maintain the property that the functions are, in addition, eigenstates of

the operator S . For this total angular momentum operator we have eigenvaluesz
S(S + 1)h. A state with this value of spin can have as z component of its spin M S

*' S, S-1... -S.

Let us see how we can, in a systematic manner, build up states which are eigen-
2 2

states of S and Sz* (We shall refer to states which are eigenstates of S as states of

definite multiplicity. ) To do this we start with one electron add another and couple

their spins in the familiar way to form a state of spin S = 1 and another state with total

spin S = 0. If we now add a third electron, we can, from the state S = 1 of the two-
1 3

electron problem, form a state with S = and another with S . By combining the

third electron with the S = 0 state of the two-electron problem we form a state with

S= 1 in addition to the state we have already formed with S=. We have for the2 S 1

three-electron problem, by this procedure, two states with S = . and one state with

S = 3. We can now continue this problem forming states for the four-electron prob-

lem. The number of states obtained for each multiplicity for the n electron problem
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S

5/2

2

3/2 14

f3

11

1 2 3 4 5

Fig. 4-1

is shown in the form of a branching diagram (Fig. 4-1). The numbers in the circles

show the number of states of spin S of the n electron problem. By the number of

states of spin S we mean the number of states with spin S and a given value of M s .

For each state of spin S of the n electron problem there will be ZS + 1 states with MS

taking on values from S to - S.

We can actually calculate the number of states of the n electron problem in

spin space which are eigenstates of S and S . We have found a formula for the num-z
ber of states with a given value of MS above. If we evaluate this formula for M S =

S + 1, we have the total number of states with their total spin greater or equal to S + 1

and MS = S + 1. If we now take the difference between this number and the number of

states with M S = S,we shall find the number of states with total spin equal to S and a

given value of M S . This number is given by

n! n!

(S+ )! (1 n - S) (S + 1 +ln)!(1 n -S 1)

If we were to multiply this number by 2S + 1 and sum over S from 0 or (depending12
on whether n was odd or even) to .n,we would obtain the total number of states which

is 2
n .
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Let us check this for the five-electron problem. We see from Fig. 4-1 that
5

there is one state with S =-. This means that there are five states with this value of
2 5 5 3

S and M S values ranging from - ,- to,. For S =there are four independent states
S2

which can be formed for each value of M s. There are four different values of M S pos-
3 1

sible for S -. This yields 16 more states. For S = - there are five states and two
M values. This yields 10 more states. We thus see that we check the number of

states as 6 + 4(4) + 5(2) = 32 = 2 . We have therefore the same number of states in

the scheme where S2 and Sz are diagonal as we had in the simple product scheme for

n = 5. This can be proved quite generally, but we shall not do it here the proof being

quite straightforward.

We can actually exhibit a method of progressively forming states of definite

multiplicity (S a good quantum number) as we increase the number of electrons. Sup-

pose we wanted to arrive at the states corresponding to a given value of S and n. The

lines on the branching diagram indicate that these are constructed by adding one elec-

tron to the states corresponding to S ± 1/Z and n - 1 electrons to form a state with spin

S for the n electron problem.

s+ 1/2 The problem of compounding angular momentum is discussed

s in many texts. If we call 4(S, MS) a state for which S z(S, MS) =

S- 1/ S(S + 1) h2 p(S, MS); Sz (S, M S ) = MSiP(S, M S ) and we add one elec-

n- tron to this system then we can form the states

Fig. 4-2

j(S+,S+!) (S,S)a
2' 2

j(s + 1 s - 1 ) = % s s' - l_)a + (s, s)p (4-6)
1 12 -S + +

1 - -1 )ci - " (s, s)p

With the repeated application of the formula (4-6) we can carry out the construction of states

of given multiplicity and M S by adding one electron at a time. If we label the q states corres-

pondingtoS+ 1/Z andn- electrons as I(S+ 1/2, MS; n-1)11... q, andthep states cor-

responding to S - 1/2, M S andn- 1 electrons as,(S - l/Z,MS;n- 1)1=1... p, we canform

p + q states with spin S and M S =S. They are given in (4-7).11 1+I
k S +-itS n 1)a - /S+ 1 q k(S + T, S+, n - 1)p

n) k(S+iS- , n-lc -

k(S S,1n) = + n k=l... p
(4-7)

p 1 1 1o
0k(SS'n) = ¢k -- S--,n- =p+ 1... p+ q

In these formulas $5 -i1 MS, n - 1) depends on the coordinates of the first n - I elec-
2 th

trons and a and P depend on the spin coordinate of the n electron. We have written

here the states with M = S. In order to get the states with M S ranging down to -S, all
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we need do is to apply the step down operator

S n

to these states and then normalize the resulting states. In this way, we can construct
all states ,(S, MS $ n) for all S, MS and n by building up our states from those of one

electron. The states which we construct in this way can easily be seen, from the

method of construction, to be normal and orthogonal.

This treatment represents at least one way of making states of definite multi-

plicity and M S . It is a rather clumsy method and seems to have little to do with per-

mutations of the spin coordinates. It will, however, turn out to be the case that the

states P(S, MS, n) I = 1 ... p + q form a basis for an irreducible representation of the

group of spin coordinate permutations. Let us see how this comes about.

Since our Hamiltonian does not involve spin it is certainly invariant under

permutations of the spin coordinates. We have,in the preceding paragraphs, constructed

states which form a complete set as far as spin properties are concerned for an n

electron system. Let us see what effect the spin permutation operators have on these

states. We shall denote the spin permutation operators by PI. There are n! such op-

erators. For example, if we denote by P.., the operator corresponding to the inter-
th 13 thchange of the spin coordinate of the i and the j electron, we have

~P. . a(i) P(j = a(j) P(i)
l'3

Let us see what effect one of these spin permutation operators has on any n electron

spin state which has MS as a good quantum number. We shall denote this state by LJ

and understand that it is any linear combination of spin product functions with the same

value of Ms and which corresponds to n electrons.

n

S Msh4J; S z = S s

It is clear that S z is an operator symmetric in all the spin coordinates and therefore

S z commutes with any operator representing permutations of the spin coordinates.
(S zP = PS z) This means, of course, that the state P4I is also a state with the same

value of M S . In a similar way, since S = (s I + s .. . +s n ) , then P0S2 = S P0. If

q were a state of definite multiplicity, then P% is also a state of definite multiplicity

with the same value of S as 4. Thus we see that Poqi1 (S, MS, n) must be some linear

combination of the states corresponding to the same S, M S , and of course n. We have,

therefore, the result that
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P qp(S, M., n) = F(P'). (S, M S , n)
j=l

It is easily seen that if "Po = 'PaPr then

r (,,po) = (,p0-) r(p-)

In this way we see that the matrices representing the effects on the set of functions

corresponding to a given S, M S, and n form a representation of the group of spin per-

mutations of degree n. The dimension of this representation is given by the number

of states of a definite multiplicity and M S for the n electron problem. This is the

number indicated in the circles in the branching diagram (Fig. 4-2) and we have also

derived a formula for this number. We can show more about these representations.

We can show that for a given n the representations corresponding to a given S is the

same for all M (if the method of construction which we outlined is used). We shall
S

also be able to show that the representations corresponding to the same n but differ-

ent S are inequivalent and irreducible.

If we confine ourselves to a given S then for a particular M S , we have

p+q

P -i(S, MS, n) = (PO')j 1 j(S, MS, n)

I. Let us apply

'h n +

z2:r
S =1

to both sides of this relation. We know that S P,(S , MS, n) = cS, MStI(S, M S + 1,n).

It is also clear, since S is an operator invariant under permutations of the spin co-

ordinates that

PVfS±p1 S, MSn) = n)pO)~
I- ((P-)ji S (S M S ,n)~J

i° or

P'r, J(S, M S + 1, n) = [ r(Pr).l ji.(S, M s + 1, n)

In this way we see that, by repeated use of the step up and step down operators, we

can show that p1(S, M S , n); I = 1 ... form bases for the same representation as we

vary M S.

In order to show that the spin eigenfunctions corresponding to a given S, MS,

and n form bases for irreducible representations of the group and that the representa-

tions corresponding to different values of S and the same n are inequivalent, we shall
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need an interesting identity called the Dirac identity. This states that

P a {+ -1 (4-8)

This is easily shown, since we can write

IT ~2 - + '_lz '2Z

Any spin function of the n coordinates can be written

2 Sn) = a (2) *(S3 ... Sn)

+ .(I) P(z) 2(S 3 ... Sn)

+ P () a(Z) 3(S3 ... sn)

+ P(1) a(2) 4(s3 ... Sn)

In this the s's represent the spin coordinates of the electrons. We can easily see that

2 fl + C " 2 (1) a(z) = a(l) a(z)

fl + a" 2 P(1) .(Z) = a() P(Z)

$ { + *i p(i) a,(z) = (l) p(z)
+ {l + *2 IP0) P(2) =P(1) P(2)

From this we conclude that PT has the same effect on a(l) a(Z), a(i) P(Z), p(I) a(Z)

and P(i) P(z) as 1 + I' -( does. For any function of spins we have that

, i p .zT (Sl, S2,... sn  s 2+1 z (lS .... Sn
1'2~( 1  n~' Ti~ f l + %}(1i T2 n

In a similar way for any coordinates i and j

ij -i 5}p.. = _ 1+ -"

Let us now form the sum of all permutations which represent transpositions.

Since all these transpositions have the same cycle structure we are summing all the

operations in a given class.
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pairs I pairs

iij i~j

iij
n

=%nn - 1) + Ti~) a.. (4-9)
i i=l

-(n-1) + (4) S - 3n]

4 h2
n2 S2
-n +

Now let us imagine that we applied P?. to a function qi(sl ... , sn) which was a
ii npartner in a basis for an irreducible representation of the permutation group of spin

coordinates.

1 X ! pqO s 1 2 ... (PI)k k(s S S)
pairs i3(l' s . .n 2 pairs kl a iklk 2....ni~j i¢,j

The sum of P (P ) is just the sum of all matrices representing elements in a given
class. We have seen from Equations (2-140) and (2-141) of Chapter II that

Z (Pi -
pairs xa(E) I
i~j

where h is the number of elements in the class of transposition (i. e., n - 1)/2) and

xa(E) is the dimension of the irreducible representation. We have obtained, therefore,
that

(sl .. ' p.) n(n -1 i) Y so-

pairs i (Sl ..... Sn -) X a (pE) ) L (s ... Sn

On the one hand we see that for partners in a basis for an irreducible representation
of the permutation group of spin coordinates the operator

XP.pa i jii
i rs

is diagonal. This means that basis functions for an irreducible representation (from
(4-9)) are eigenfunctions of S and therefore states of definite multiplicity. On the
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other hand, if we have an irreducible representation which has as its basis a set of

functions which are eigenfunctions of S then for bases with different multiplicities we

have different characters for the class of transpositions. Thus, if the multiplicities

of two irreducible representations are different then the representations are inequivalent

since they differ in the character of at least one class (the class of transpositions).

We shall now go on and prove that for the n electron case states of definite

multiplicity and M S form irreducible representations of the permutation group of spin

coordinates. We shall prove this by induction. We shall assume that for the n - 1

electron problem the states 4i(S, MS, n - 1) 1 = I ... form bases for irreducible repre-

sentations of the permutation group of degree n - 1 and then prove that if we add an-
th

other electron (the n ) we shall have states ,(S, MS , n) I 1 ... which form bases for

an irreducible representation of the symmetric group of degree n.

We saw that the functions of definite multiplicity and M s could be constructed

from the definite multiplicity states of the n - 1 electron problem by Eq. (4-7). By1
hypothesis we assume that 4I(S + ,MS, n - 1); 1= I ... q forms the basis for an irre-

ducible representation rl(PG), and L,(S - 2, MS n I 1 11... p forms a basis for

an irreducible representation r"'(Pr) of the permutation group of degree n - 1. From

the last paragraphs we see that since r' and F" have as their bases states of differ-

ent multiplicities they are inequivalent irreducible representations. The group of all

permutations of the first n - 1 spin coordinates forms a subgroup of the group of all

permutations of n things. Consider the functions (4-7) of the n electron problem. If

we apply any operation Pa which belongs to the permutation group of the first n - 1 co-
th

ordinates to one of the states Lk(S, S, n) we leave the n coordinate unaffected and ob-

tain

p

Sk(SS, n) = -F(P -)I k I(S, S,n); k = 1 ... p

p+q
P p k(S,S,n) = r,'(PI),ktpl(S , S,n); k =p + 1...p + q

.I=p+ 1

Thus the functions k(S S, n) k = 1.... p + q form a representation which, for members
th

of the permutation group which leaves the n coordinate invariant, has the form

p q

P (PP 0
q 0
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Let us find a matrix A which commutes with every r (Po) for Pa- a member of the

group of permutations of the first n - 1 coordinates. We can block off this matrix A
in a similar manner to (4-10)

p q
A = q _A, A q

From P(P-) A - AP(Pr) we obtain

A1 F'(Po-) r Pa-

A4 "(P°-) = p1 (P T) A 4

r'(PT) A2 = A2 P "(PT)

r,,(PT) A 3 = A 3 P(pT)

Since r' and ["I are inequivalent irreducible representations of the group of per-

mutations of the first n - 1 coordinates, we have from Theorems 5 and 7 that

A = a1  A2 = 0

A 4 = a 4  A3 = 0

Thus the only matrix which can possibly commute with all the matrices P(P), where

we now let P0 run over all permutations in the symmetric group of degree n, is a

matrix of the form

p q

q a a41

Let us now consider a permutation P. operating on a state qk(S, n) = k (S _l
1in k(' k- p(S ?p(S11 - 5-- n -1) some

-, n - 1) a(n) k = p + 1 ... p + q. In the state Sk - -1' som

spin, say the ith, in one of the spin product functions which go into this state, must

appear with P spin (unless S = n/2). Therefore, we can write Pnpk(S,S,n) = g(sl,s,

.n) + g'(s 1 ... n - 1) P(n). Such a function cannot be expanded as a sum of the
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functions of the form S S, n) k = p + 1 ... p + q since all these functions involve the

factor a(n). Thus in

p+ q
P-n lk(SS n) = r(Pan)1_k ,(S, S, n) k = p+ 1 ... p + q

1=1

at least one element r (P[)l,k, for k' = p + 1 ... p + q, 1' = 1 ... p must be non zero.

In order to have A commute with -this matrix we must have

aI i(Pin)l'k' = a 4  i(P'n)1' - '

or

a1 =a 4

In this way we see that the only matrix which commutes with all the matrices P, (Pr)

representing elements of the symmetric group of degree n is a constant times the

unit matrix. In this way we conclude from Theorem 6, that the representation [(P')

is an irreducible representation of the symmetric group of degree n. In the proof of

this theorem we have tacitly assumed that, for the states S S, n) of the n electron1 1
problem states of spins S + f and S - f of the n - 1 electron problem contributed. For

the top state and, for n even, for the bottom states on the branching diagram corres-

ponding to a given n this is not true. From Eq. (4-7), we see at once that for these

cases the states 1k(S, S, n) automatically form irreducible representations of the sym-

metric group of degree n since they all come from one irreducible representation of

the group of degree n - 1.

In the above discussion, we have shown that for an n electron problem that

the collection of spin functions which have a definite multiplicity and M S form a basis

for an irreducible representation of the symmetric group of degree n. We have also

seen that for different multiplicities we have inequivalent irreducible representations.

Let us see what we can learn of these irreducible representations. For the two-electron

problem with M S = 0 we can form two states, a singlet

a(l) P(z) - P(i) .(z)

and a triplet

a-0) PWz + P(l) -(2)

VT
In this case the permutation group is a group of order two with elements E and PT1-
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It is clear that the singlet forms the antisymmetric representation of this group and

the triplet forms a basis for the symmetric representation. Let us now consider the

state of maximum multiplicity of the n electron problem. (The multiplicity of this

state will be n/2. The state ,(nn , n) can be written as
Z' 2

-,n) = a(l) a.(2) a(3) ... a(n)

Thus, the states of highest multiplicity form bases for the symmetric representation

of the symmetric group. From the branching diagram we see that this is the only

representation which has dimension one except for n = 2. We see in this way that for

n > 2 it is impossible to find basis functions in an n electron spin space for the other

one-dimensional representation of the symmetric group (antisymmetric representation).

This is true of other representations of the symmetric group. For n > 2 there are

representations of the symmetric group which cannot find basis functions in spin

space. This is because we have in that space only a limited number ( 2n) independent

I functions at our disposal and in general this number of independent functions is insuffi-

cient to form bases for all the irreducible representations of the symmetric group of

degree n.

SWe can illustrate this point further to give a greater insight into the complete

parallel between states of definite multiplicity and the irreducible representations of

the symmetric group by considering the projection operators which we set up in Sec-

tion 3 of this Chapter. We have seen that for an n electron problem the states of a

given spin and M S form a basis for an irreducible representation of the group of per-

mutations of spin coordinates. On the other hand, it is clear that any collection of

our spin product functions that form a basis for an irreducible representation of the
2symmetric group of degree n is an eigenstate of S . It is clear that these states are

' eigenfunctions of S2 since they are eigenstates of operator

P
pairs

n(n - 1)
giving 11(PV) as an eigenvalue. Since

2X(E) 13

Z ! -n2 n+S2

pair
iljs

they are also eigenfunctions of S2. In addition the collection of states then forms a

basis for an irreducible representation of the symmetric group can be chosen to be

eigenstates of Sz with the same value of M S by confining our attention to spin product

functions with some definite value of M S. By our method of construction in Eq. (4-7)
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we have shown one method of making eigenstates of S Z and MS and therefore bases for

the irreducible representations of the symmetric group. The states we obtained in

this way were not unique. After we had formed the states for the n electron system

which were eigenstates of S Z and S z we could take any linear combination of those for

a given n, S, and MS and as long as these states were linearly independent they would

serve equally well as a basis for an irreducible representation of the symmetric group.

In the next paragraph we shall outline another method of obtaining states which are
2

eigenstates of S and Sz for the n electron system which will in general give different

states than the method of Eq. (4-7) but which, of course, is equally satisfactory.

From this we see that if we set up linear combinations of spin product func-

tions for the n electron problem with a given MS that form bases for irreducible rep-

resentations of the permutation group acting on spin coordinates, we shall have found

states of a definite multiplicity and MS . We have at our disposal a method of projecting

out bases for irreducible representations of a group by the use of the projection opera-

tors we introduced earlier. In this way we see that the projection operators for the

symmetric group will form from an arbitrary spin function states of a definite multi-

plicity. If we apply the projection operator to a state which is an eigenfunction of Sz,

since the projection operator is just a linear combination of operators of the group of

spin coordinate permutations, we shall also obtain a function which is an eigenfunction

of S z . Thus the operators,

r (P').j P
pa-

where ra (PO) is an irreducible representation of the symmetric group, are projection

operators for states of definite multiplicity. For some irreducible representations of

the symmetric group, these projection operators will yield nothing when applied to all

of the 2 n spin product functions. These correspond to just those irreducible representa-

tions which cannot find a basis in the space of spin product functions.

Let us illustrate these remarks from the case of the symmetric group of

degree three. As we have seen from the first chapter this group is isomorphic with

the group C3v, and therefore we have all the irreducible representations from (2-107)

of Chapter II. The projection operators are

1

21 =P + P2 + P3 + P4+ P5 + P6

l1 1 2 3 - 4 - 5 6

3 1 1 1 1 ii f Pl f P -P3 - P4 T P5 -Z P6
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12 Z 2 3 5 52 6

21 = - 2 J P3- p5 + _ p6

3 = 1 1 1 1
P2 P P P -P22 = -Z 2 - 4+P4-Z 5 2P6

Let us use the definitions of the permutations P1 " P 6 from Chapter I and apply these

11

projection operators to the state .(I) cL(2) 13(3) with M S =l

h a(1) a(2) P(3) = 2 (1) a(2) 13(3) + a(1) 3(2) a(3) + 3(1) a(2) -(3

11-(i) a.(2) P(3) = a(1) a.(2) P(3) + 1(1) a(2) a(3) + a(i) 3(2) a(3)

- c(i) 1(2) a(3) - 1(1) a(?) -(3) - a(1) a(2) P5(3)

/1 a(l) a(2) [5(3) =0

a 0(I) a(2) P(3) = .(1) a(2) 3(3) - 11(1) a(2) a(3) - I-a(I) P(2) a(3)

a(1) P(2) a(3) + i1(i) a(2) a(3) + -a() a(2) P(3)
2 2

3 33
3 (1) -(2) 13(3) = a(1) a(2) 13(3) - (3l) (2) a(3)

zl3 .(i) u(2) 13(3) -_-- 1(1) 0(2) ia(3) + --T a(i) 13(2) a,(3)
3 T Va() 13P(3) = a(2) 13(3) + -a1( (2) 3(3)

/3 1(1) a(2) a(3) + -i a(l) a(2) P(3)

3 2T
31 a() 1(3) = .3(I) a(2) (3) f- () 1(2) (3)

- a 13(1) a (2 ) (3 ) + n 5 (1 ) P(2 ) 3(3 )

~c±(1 0(213(3 P (l) ai(2) a3(3) + cd1a~) 13(2) P(3)2 2

33
+3 (() 1(2) P(3) = a(l) .() ) (3) - J)() P(2) a(3)

2 2

= I 3 1.(1) .(2) P(3)

2zz a(1) a(2) 13(3) = a(l) a(2) 3(3) - T P() a(2) a(3) - a(1) P(2) a(3)

+ a(i) P5(2) a(3) -iN1) a(?-) a(3) -I a(l) a(2) P3(3)

zz a(l) a(?) P5(3) a-- ) P5(3) + j l)P2 .()-P )a2) (3

- . 3 .(1) a(2) 13(3)
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From this we see that the antisymmetric representation r 2 (Pa) cannot find a basis.

The two-dimensional representation finds a basis as does the symmetric representa-

tion. We see from the branching diagram that the two-dimensional representation has1
as its basis states with S=-. The symmetric representation has as its basis the func-

2
tion rIi a(l) a(z) P(3). From the properties of the projection operators we know all

the states we have constructed in this way are orthogonal. They are not, however,
1 1

normalized but it is simple to accomplish this. The two states with S = ,M

are not unique and any independent linear combination of them is a state with the same

eigenvalues. Forming two new independent states out of the two doublet states just

induces a similarity transformation on the irreducible representation. As we men-

tioned above, this is true for any set of states of the n electron problem in spin space

with a given S and M S . It is always possible to perform a similarity transformation

on the representation by taking linear combinations of the states.

This completes the discussion of the spin eigenfunctions. We have seen that

our Hamiltonian is invariant under permutations of the spin coordinates and that we

could set up a complete set of functions in the space of all spin which were eigenstates

of S and S and that such states, for a given S and MS, form bases for irreducible

representations of the group of permutations of the spin coordinates. In the next sec-

tion, we discuss the invariance of the Hamiltonian under permutations of the spatial

coordinates of the n electrons, and then see how the representations of spatial permuta-

tions and spin permutations are connected in such a way that we obey the Pauli exclu-

sion principle.

3. Permutations of Spatial Coordinates and the Pauli Exclusion Principle

The Hamiltonian we are considering

n 2Z

H = const. + + - ++ 2 + (4-11)

is invariant under any permutation of the spatial coordinates of the n electrons. Let

us call these operations PS. There are, of course, n! operations in this group and

it is isomorphic with the group of spin permutations, P -. We could, in principle, find

eigenfunctions of the Hamiltonian (4-11). We know from our general considerations that

the eigenfunctions of this Hamiltonian corresponding to a given energy will form a basis

for an irreducible representation of the group of permutations of spatial coordinates.

We can, therefore, for our Hamiltonian (4-11), find eigenfunctions corresponding to

an eigenvalue E which are functions of the spatial coordinates and form bases for an

irreducible representation of the permutation group of spatial coordinates. We can,

clearly, multiply any of these eigenstates with any function of spin coordinates and still

have an eigenstate of our problem with the same energy. In principle we could find all
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our energy levels by just finding the spatial eigenstates of our Hamiltonian (4-1 1). This

would be the entire story if it were not for the Pauli exclusion principle. This states

that for any permutation of both space and spin coordinates the wave function must be-

have in an antisymmetric manner. Any permutation of both space and spin can be writ-

ten as the product of the space permutation PS and the corresponding spin permutation

PO-. (Ps and Po are thought of as corresponding to the same abstract permutation P.

The first acts on spin and the second on spatial coordinates. ) It is clear that since the

two types of permutations act in different spaces, P5 p = P P . The Pauli exclusion

principle then states that the only allowed states are ones for which

P, rl n) ± s -t r , s . (4-12)
1 n 1 n'

± depending on whether the permutation is even or odd.

Let us see how this exclusion principle influences the wave functions and en-

ergy levels of the n electron problem. It is clear that we must combine spin functions

with spatial functions so that the total wave function can obey this antisymmetry prin-

ciple.

Since the Hamiltonian we are considering does not involve spin we must com-

bine only spatial eigenstates of our Hamiltonian corresponding to one energy level so

that we may have an eigenstate of the Hamiltonain with spin coordinates included in it.

We know that the spatial eigenstates corresponding to one energy level are partners in

a basis for an irreducible representation of the group of permutations of spatial co-

ordinates. Let r'1 (l ... (r) ... 7.. " n) have the property that

Hi1 = E¢l

and q
5

P Lk = k r(P) 1k

where F' (P) are matrices in an irreducible representation of the symmetric group.
There may, in the case of accidental degeneracy or some additional degeneracy induced

by another subgroup of the group of Schr6dinger's equation, be more bases for irredu-

cible representations of the group of spatial permutations corresponding to this energy.

This will not influence the validity of the argument that follows.

The most general state we could make whose coordinates are both the space

and the spin coordinates of the n electrons and whose space parts are taken from the

I is

q

.n l.. n 1= ... ' ) g1(s I... Sn-1
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The g,'s are any functions of the spin coordinates alone. Put another way the g1 's are

linear combinations of the 2n independent spin product functions. Let us see what the

Pauli principle tells us about the g1 's.

(r" rnl n) ( s n)

q q (4-14)
pp tP ( 1 ,, " ... g1(sl ... S = ± L J g

.1=1 1=I

Since we know the effect of PS on k we can write

q q q

-7 -7 r(P)k Lp P~g 1 9= -7 Z J ~11=1 k= =1

We can always choose our Lk'S to be an orthogonal and normal set in which case f'(P)

is unitary. Let us multiply both sides of the last equation by Lm and integrate over

all the spatial coordinates. Using the orthogonality of the 4 k'S we obtain

q

F (P)ml PC ga = gm (4-15)
1=1

If we now in (4-13) multiply by F(p-)km and sum over m we obtainIfP

PT gk = ! I )km gm (4-16)
m

gk= ± I(P)mkgm (4-17)
m

Thus the gk's transform as the associated representation of r(P)* that is r,(P)*.

We now know that the spin functions gk must transform under the permutation

group of spin coordinates according to an irreducible representation of the symmetric

group. This means, as we have seen, that they must be eigenstates of S2 and can be

chosen to be eigenstates of S . Except for the case of an accidental degeneracy we can

associate with each energy level a value of S and the corresponding 2S + 1 values of

M S •

It would seem that, in the case we neglect magnetic interactions, we get the

same energy levels whether we include spin or not. Thus we might think that by find-

ing all the spatial eigenstates of the Hamiltonian (4-11) we would find all the energy

levels which arise. All we would need do to find the wave functions is to obey the ex-

clusion principle by combining states of the one energy level with the spin states which

form a basis for a particular representation of the permutation group of spin coordin-

ates. The irreducible representation which we use is the one which is that associated

with the complex conjugate of the irreducible representation which is generated by the
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spatial eigenstates. This is indeed the case. We do get all the energy levels in this

way. The only trouble is that by solving the Schr6dinger equation for spatial wave func-

tions we get too many energy levels. Let us see how this comes about by an example.

There would surely be a spatial eigenstate of the Hamiltonian (4-11) which

forms a basis for the symmetric representation F'I(P) of the permutation group of

spatial coordinates

H = Eo0 o

We have seen that in order to obey the exclusion principle we must find a spin state

/g1(sl * S ns) such that g0 transforms as the complex conjugate of the representation

which is associated with P (P). In this case this means the antisymmetric representa-

tion rl ' (P ) . Therefore

P g0 ,(s . s n ) = + go(s. s.n )

depending on whether P is even or odd. We have already seen that for n > 2 you can-

not, in the complete set of 2n spin functions, find a function which has the property that

it forms a basis for the antisymmetric representation of the symmetric group. Thus

we see that for n > 2 the spatial function that behaves in a completely symmetric man-

ner under the group of permutations of the spatial coordinates can never find in spin

space a function such that the product obeys the exclusion principle. We must, there-

fore, throw away the energy level E o . As we mentioned thereare other representations

of the symmetric group which cannot find a basis in spin space. Any time that rP'(P)*

is one of these missing representations then the set of spatial functions which trans-

form like r (P) and the associated energy level must be dropped from consideration,

since we cannot obey the exclusion principle and these states are therefore not physi-

cally meaningful. We could look at the process as follows. We could find all the en-

ergy levels of our problem by finding all the spatial eigenstates of the Hamiltonian (4-11).

After we had accomplished this all we would need to do is throw away those energy

levels which have eigenfunctions which cannot be made antisymmetric by the addition

of the n spin coordinates. We can easily check which eigenstates we must throw out by

seeing whether rt(P)* can find a basis in the collection of 2n spin product functions.

Once we have thrown those energy levels away we can make the remaining states anti-

symmetric by adding spin coordinates and then associate with each state a definite

multiplicity and M S . This is how it comes about that through the exclusion principle

the energy levels depend on the spin quantum number S even though our Hamiltonian
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depends only on spatial coordinates.

In the next section, we shall see how the concepts of this section can be put

to use in an approximate method of finding the eigenstates of our Hamiltonian. This

method is called the Dirac Vector Model. In addition, we shall be able to show how

this vector model ties in with the determinantal method of treating the n electron

problem.

4. Dirac Vector Model and the Determinantal Method

A. Simple Vector Model

In the last section, we showed that only certain eigenvalues of the n electron

Hamiltonian (4-11) were physically meaningful. The eigenvalues which were meaning-

ful were those which were compatible with the Pauli Exclusion principle. Thus, if

the degenerate eigenstates corresponding to some eigenvalue E of the Hamiltonian

(4-11) form a basis for an irreducible representation r (P) of the group of permuta-

tions of spatial coordinates this state may or may not be admissable. The only energy

levels which were admissable were those for which basis functions for the representa-

tion of the permutation group of spin coordinates r"(P)* could be found amongst the

collection of 2 n spin product functions. As we observed, this was not always possible.

This also influences any approximate calculation of the eigenstates of the Hamiltonian

(4-11). We can calculate approximate eigenstates of the Hamiltonian and be assured

that they are physically meaningful by making sure that the spatial wave functions have

the desired symmetry properties. If we do this we know that we can always make a

totally antisymmetric state of the same energy by the addition of spin coordinate func-

tions. We shall discuss one such approximate method in this section.

We might hope that by taking a product of one-electron wave functions we

could find an approximate solution to our many electron problem. Thus, if 1' 2 ...

£ n are n linearly independent spatial functions of the coordinates of one electron, we

might form an approximate wave function

= ' ( ) 2( ) ... Pn(n)

If we took the expectation value of the Hamiltonian (4-11) with respect to this wave

function (§ H 0o) we would get some approximate value for the energy. It is clear

from the unitary nature of the permutation operators and from the fact that they com-

mute with the Hamiltonian, that P5 Io has the same expectation value of the Hamiltonian

as o Thus we have n! states P which are degenerate. In order to find the best
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energy we can obtain from these states, we should take a linear combination of them

with arbitrary coefficients multiplying each, and minimize the energy with respect to

variations of the linear coefficients. There would be n! unknown coefficients and we

would be led to a secular determinant of order n! in the usual way. Our knowledge of

the symmetry of the Hamiltonian comes to our aid. We can factor our secular de-

terminant at once by making states which form bases for irreducible representations

of the group of spatial permutations. Let us do this.

Before starting it will be to our advantage to introduce some new operators.

If PS corresponds to the permutation

p ( ... n ) (4-19)
P P2 n

then

p s o = lPl) 4Z(Pz) ... n(Pn) (4-20) - -

We could introduce operators Pf which, instead of permuting the coordinates, permute

the functions 4,. Thus, if P corresponds to (4-19) Pf § = Pl (l) p(2) ... Pn(n).

These operators have meaning only for the n! functions Ps § is concerned, it is clear

that

pS~ P p o = pl Pl) @Z(P2) "' pnPn )

(4-21)

0

or

PSi = (p-1)f 0 (4-22)

We might also notice that

IS(Pif 'f
p(pS 0 ) = (P- 1) (p, - ) I

(p-1)f (p'-i)f pf(p-1)f 0

(p-l)f (p'I)f pf(pS 1o )  (4-23)

0 i 1f T i1f fThus for operation on PS§ the operator corresponding to P'S is (p) (P -l) Pf. We

see that care must be exercised in the use of these operators. For example, we know

that

(p 'S o P SH o) (P - I s p 'S
(s (4-24)

= (p'S S
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This is an expression of the unitary nature of PS. For the P's we have a different

situation.

(P 10, Pf H 0 ) = ((p'-l)Sto, p S H 0 )

=(p(p -1)s 40 , H§ ) (4-25)
0i

=P (p-1)f 10 , H§ 0 )

With this digression on the operators Pf, we can continue.

We wished to form out of the n! functions PS i 0 suitable linear combinations

which formed bases for the irreducible representations of the symmetric group of

degree n. We might first ask which representations of the symmetric group can find

A bases amongst these n! functions. Let us assume that the l's are an orthonormal set.

That is

4n' 0m = 6 n, m (4-26)

Let us find the inner product of Pf i1and P f 0 .

n
f if(Pf110, P'f10) = TT__ 4p11' p' l

From the orthogonality properties of the 's we see that this product would vanish un-

less p1 = p'1 for all 1. In other words

if
(P fto, P o) 0 0 unless P = P'

f f(4- )
(P f 0 , Pfio) = I

s fThus the n! functions P 5 i0 (or P i ) form an orthonormal set. It is clear that under
0 0

any permutations, Pi, any of these n! functions is sent into one of the other functions.

For example if P' P = P"

P's(PS 0 ) P"s

Thus, the functions PS 00 form a basis for what we described, in Section 6 of Chapter

I, as the regular representation. We may recall that this representation had the

property that it contained every irreducible representation as often as its order.

Knowing this, let us construct the functions which form bases for the irre-

ducible representations of the group of permutations of spatial coordinates through the

use of the projection operators which we introduced earlier. Thus, if we want a set
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of functions which form bases for the a irreducible representation of the symmetric

group, we first form the hypercomplex numbers

a= r(P)* Ps i,j = 1 ... n (2-28)

n is the dimension of the representation. If we now apply these operators to the func-
a

tion 0, we obtain approximate wave functions

(L ( o (2 -2 9 )

13 3 0

We have inserted the factor A in order to normalize this function. Thus
n

( 'a=n a

i3 3ij n! ij ij 0

From relation (3-44) of the last chapter we obtain
n

a n n! n a

ij ij n! n 0 0
a

_ Z r(P)*j(§o, Ps )
r(E) ij (t0 0)

b -1

We may recall that the functions I a  
. I a  form a basis for the a irreducible repre-senatin.Thi istre fr l j ""na3 a

sentation. This is true for all j. From this we know at once that the functions ...
a n for a particular value of j form an orthonormal set. We have n such sets of
nco

functions (j = 1 na each set forming a basis for the a irreducible representation.
If these n sets of functions are linearly independent then we have the bases for the ir-a
reducible representation a contained n times in the regular representation. This is

not difficult to show. Thus

nWQa, QOC, a to' tl 1 40

ij ' )  n! 13 0 ' 1 o )

n, n' a

n' H_ 0' 3j3a ,0 )

r(P)_..,( P

r(E)*, (, 0)33 0
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In this way we see that the functions § a. for all i and j form an orthonormal set. Theij

functions § i =1 n (for a given j) are partners in a basis for the a irreducible

representation. There are n such sets of partners. We see from Theorem 15 that

there will be no matrix elements of the Hamiltonian between functions corresponding

to different a or different i values in (4-z9). There will be matrix elements of the

Hamiltonian between a and i,. The Hamiltonian matrix (from Theorem 15) between

' and O j ,, since both of these functions transform according to the same column of

the same irreducible representation for all j and j', is the same as the Hamiltonian

matrix between §cL and ,La Thus, in order to find the n energy levels arising from

the approximate wave functions P t which correspond to the a irreducible representa-
0

tion all we need do is to find the roots of the secular equation arising from the states

fa (j = 1, 2, ... na ) . Let us do this.
The n states (j = 1 ... na) are orthonormal. To find the energy levels we

must solve the secular determinant

I H - EalI = 0 (4-30)

The a means that we are finding those energy levels corresponding to the a irreducible

representation. The matrix Ha is given by

- Ha n a n!

H C., - ( aIo Hi , Lo) (4-31)
33 n! n CL 3i 0 13 0a

By using Eq. (3-44) of the last chapter, we can rewrite this as

n
a a n' aH.. ( . H; .

n(4-32)
as

= I r(P)jj,(io HP5Io)
P

If we define

V(P) = H P p o) (4-33)

we obtain

H.., = : r(P)*., V(P)
P (4-34)

Ha = I P(P)* V(P)
P

The matrix elements V(P) could be written out explicitly, but we shall delay this for

the moment.
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Thus we see that if we take the roots of (4-30) we shall have the approximate

energy levels corresponding to the a irreducible representation. Once again we must

employ the exclusion principle. This just throws away certain irreducible representa-

tions. Any representation (P) must be discarded if p'(P)* cannot find a basis in
na a

the space of the 2 spin product functions. If we have one of these admissable repre-

sentations, then this representation, we recall, is specified by the number of electrons

and the spin S. The proper antisymmetric unperturbed wave functions will be given

n
n Ia. qt(S, MS, n) j = I ... n (4-35)

where
n

= i (P)L*

There are n such antisymmetric wave functions corresponding to a given multiplicity.

After diagonalization of the Hamiltonian matrix connecting the states .. j = 1 ... n

there will be na linear combinations of the n states in (4-35) which are the best ap-

proximate wave functions for the spin which we can obtain from the type of functions

which we have considered.

We can reformulate the problem somewhat differently. Let us consider the

effective Hamiltonian

f
Heff. = j V(P) P (4-36)

P

We call this an effective Hamiltonian because it involves the function permutation op-

erators Pf and only has meaning for the functions P l o" It is not difficult to see that

we get the same Hamiltonian matrix using the functions P Io and the effective Hamil-

tonian that we do if we use the functions P so and the real Hamiltonian (4-11).

V(P-1 P') (P5s 1c HP o_ (pSt 2: V(P,,)P,,fP'0o)V~p-p,)= (PloHp'So )  P",

= X V(P")(PSto ' pIf(p'-l)f °  (4-37)
P, 0

- V(p)(P s 10, P(P 0 - 0 0
P

Because of the orthogonality of the P o's this yields

(PS o , HefP' s *) = V(P - P,)

= (PSt, HPIsIo )
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Thus when finding the Hamiltonian matrix between the functions PS Io or for that matter
a0

j we could equally well use the effective Hamiltonian (4-36) as our Hamiltonian

(4-11). We can also easily see that an effective Hamiltonian

v(P) PS
P

will give the same energy levels as (4-36). If we take as our basic set of functions
f o

P 0 instead of P o we get the same matrix of interaction for this Hamiltonian as we

do for the Hamiltonian (4-36). (These two sets are, of course, related by a unitary

transformation, the one set just being the other set with the functions relabeled.
-f = PS((p-lfo )

~pi V(" ,Spf1s P ")pSp
S  P") P(4-38)

-= V( P')

As far as the states P 10 or P 4o are concerned we can use either the Hamiltonians

XV(P) Pfor X V(P) Ps

P P

and get the same energy levels by a variation procedure as we do from the original

Hamiltonian (4-11).

There is yet another effective Hamiltonian which we can construct which has

useful properties. We can show that the Hamiltonian

r 1'(P) V(P) pa (4-39)
P

when matrix elements are taken in the space of spin product functions, also gives the

same energy levels as the effective Hamiltonians we have just discussed. (Let us re-

call that r 1 '(P) is the antisymmetric representation of the symmetric group.) We

first notice that there are no matrix elements connecting spin product functions with

different MS since the effective Hamiltonian does not change MS. For states of a given

MS there can be formed eigenstates of S as we have done in an earlier section. States

with a given value of spin and MS, we have seen, will transform as a basis for an ir-

reducible representation of the symmetric group. We have denoted these states by

i(S, MS, n) and it will be assumed that these states form a basis for the irreducible

representation r '(P)*. (We note in passing that there is a one-to-one correspondence

between S and a.) We see that
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(q i(S, MS . n) -7 rl ( P ) V(P) Pa' q(S', M S , n))

P

I r1
'(P ) V(P) _- (qi(S, M S , n) i' (P)kj k MS, n))

P k

We notice that for the functions 4j(S, M S , n) j = I ... n corresponding to a given M.,

we get the same Hamiltonian matrix as we did for the original Hamiltonian and the

functions I.'. j = 1 ... n . The energy levels we obtain will be the same. Since our

original spin product functions are just linear combinations of the functions (S, M S, n)

we get the same energy levels by using the Hamiltonian (4-39) and the spin product

functions.

We now make use of the form of the Hamiltonian (4-11) to find an explicit ex-

pression for the matrix element V(P).

V(P)= (10, HPs o ) = (Pf 0 , H 0 )

n 2Z2J *p(1)p *(2).. .p *(n) _v 2 + + .+ (n)

1 p 2  n i,a Ira-RI i>j Ir-i rn

dTl ... dT' (4-40)

We can see at once from the orthogonality of the O's and from the fact that all the

operators in the Hamiltonian involve no more than the coordinates of two electrons,

that in order for V(P) to be non vanishing P must be either a transposition or the iden-

tity element. Explicitly we have

V(E) = i*(r) VZ+_7 a i(r ) d 
T

¢i(rl i(rl ) Z40j*(r 2 )  j(r )

+ 2 ) dT dT
i>j Ir1 - r 2 l 1

= Qi +  - Jij (4-41)

i i>j

2 zz C
Qi =Ji*(r) -IV + r - Ia ] i (r) dT

J-ij1
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For the transpositions we have
V(Pij) =/*i*(r. l) 4(r ) Zi(r2 ) J*(r) (4-4)

- r1 dT 1 d 2 (-

ij

J.. and K.. are the familiar Coulomb and exchange integrals. In this case the Hamil-
13 13

tonian matrix connecting states transforming as the a irreducible representation of

the group of spatial permutations becomes

H i XQ+ E iii + i- r (P.) K. (4-43)
1 >j > 13 ]

with similar simple expressions for the effective Hamiltonians. The spin Hamiltonian

(4-39) can be written through the use of the Dirac identity as

i + J +1 1 - -i i j > > i 2 ij 2 ij (4-44)

The form of (4-44) is what gives rise to the expression "vector model". The Hamilton-

ian (4-44) looks like the dot product interaction between angular momentum. With the

expression (4-43) or (4-44) we see that the energy differences arising from the states
5

pS o depend only on the exchange integrals K The Qi's and the Jij's just give an

additive term to the energy.

We shall not go into any detailed application of vector model at this point

since there are many cases discussed in the literature and other texts. We shall go

on in the next paragraphs to discuss how the vector model is altered if some of the

orbitals in the function 4 are identical.0

B. Doubly Filled Orbitals

It is not always a good approximation to assume that an n electron wave func-

tion consists of the sum of products of n distinct one-electron wave functions. As is

well known from the concept of a closed shell in atomic structure it is sometimes best

to have two electrons assigned to a single spatial wave function. (We cannot have any

more than two electrons assigned to a single spatial wave function since it is not pos-

sible to construct a totally antisymmetric wave function including spin from such a

wave function. ) Let us see how doubly filled orbitals influence the procedure of the

Dirac vector model.

Let us assume that we have a wave function

O  i(1 ) + (2) .. n~n
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where in addition orbitals 1 and are identical

01 = 02 (4-45)

With this wave function we could again use the projection operators '. to construct
a3

states which have proper transformation properties under the permutation group.

There are simplifications, however, which result from the fact that the orbital 0, is

doubly filled. Let us see how this comes about.

We can, of course, choose as an irreducible representation of the symmetric

group r (P) one in which r (P 1 2 ) is diagonal. (Any unitary matrix can be diagonal-

ized by a unitary transformation.) From the fact that ra (P1) ra(P1.) = r(E) we

conclude that the diagonal elements are ± 1. Let us arrange these diagonal elements

so that + l's occur first and then the - l's occur along the diagonal.

p q

ra(P 12) =___ - (4-46)

q 0 -

The dimension of the "+. block" is p and the dimension of the "-1 block" is q. Here

p + q = n is the dimension of the a irreducible representation. With such a form

for the a irreducible representation let us see what the effect of the projection opera-

tor cl is on I We notice first that since I = 2' P12 0 to" Therefore

E + P5s
o 2 to (4-47)to z -2--

Using this fact we obtain

. = n .I = n. _,r (P).. Ps[E+ P 2 ].4
3 -nT 1J o Zn. ij

na11 [r (p)* s + r (P ). A 4
Zn! 2 p PSa a lgij 0

1:~ ~ [r]7 +Fr(P)* i p J st

From the form of ra(P,2) we conclude

t~ =/-j.t°  j=1. p

13 ! ij 0 (4-48)

Q0 = 0 jp+l ... n 41
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(The factor K7 will turn out to be a normalizing factor. ) We notice that in this

case we do not get n a sets of functions which form bases for the a irreducible repre-

sentation. Instead, we get only p bases. Since the only states which interact are

those which have the same a and i, we shall only have a matrix of interaction, for

the a irreducible representation, of order p instead of na, the order we would obtain

if we had n distinct orbitals.

We might at this point check the orthonormality of the wave functions (4-48)

we have constructed. This can be easily accomplished.

W" t'ik j,k =lI... p
i(449)

n 2 na (§ o( jk §o )  (4-49)

r (P)* ) =* ( PPIZr (p) o (P-1)f
2P CLjko o a jko 0 0

We have made use of Eq. (4-44) of the last chapter in deriving this. From the or-

thogonality of the 's we see that only two terms will contribute to the sum in (4-49).

P must be either E or Pl. In this case we get

(1i' ,k) 1 r(E)(4o' to ) + r Ial9~'k(u o , o) j, k = 1 ... p

Since ra(PlI)jk = 6 jk' j, k = 1... p we finally obtain the desired result

(a

ij' ik)  6 jk
a

We have now seen the limitations on the functions 0i2 because of the doubly

filled orbital. Let us now see what the spin part of the wave function must be like in

order to be compatible with the doubly filled orbital in the space part.

We have already seen that the spin part of the wave function must transform

like r '(P)*. In this case for P we have
a 12

p q

I 00+

q )0



(4. DIRAC VECTOR MODEL AND THE DETERMINANTAL METHOD)

Thus we see that the functions j(S, MS , n) which form a basis for this representation

will be divided into two groups. The first p transform antisymmetrically under P 12

the remaining q symetrically. Let us see how such states might have been constructed

from the branching diagram.

We constructed the states of the branching diagram originally by adding one

electron at a time. We could equally well have proceeded by adding two electrons at

a time starting with either n = 0 or 1 and proceeded in this way to construct our states.

The states for the two electrons which we add we can take to be

a.(1) a(Z)

P(1) PWz

a(l) P(2) + P(l) a(2) (4-50)

aL(1) PWz - 13(1) cQ(2)

The first three are the states with S = 1 and M S = + 1, -1, 0. The fourth is the two-

electron state with S = M s = 0. If we had the states j(S, M S, n - 2) for the n - 2 elec-

tron problem we could construct the states for the n electron problem in the following

manner.

S+ 1

S p . S

S-1

n-Z n

We could combine a spin 1 with a spin S + 1 to give a spin S (upper arrow). We could

combine a spin 1 with a spin S to give a spin S (one of the middle arrows). We could

combine a spin S - 1 with a spin 1 to give a spin S (lower arrow). Let us say that these

three methods give rise to the last q of the n states 4j(S, MS, n). These three methods

would involve the first three of the two-electron functions in (4-50). The first p of the

n states we would obtain by combining a spin 0 of the two-electron problem with the

Mpin S of the n - Z electron problem. This would yield a spin S (other middle arrow).

Wo can now write the spin eigenfunctions in the form
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qj(S, Ms, n) = ij(S, Ms, n - 2)[0(1) ()-a(Z)(1

4i.(S, MS , n) = ej(s 3 ... Sn) a(l) a(2)

(4-51)

+ f (s+ S () 1)

+ gj(s 3 . n) Ca ( 1 ) P(2) + C(2) P(o j p +1... n

(We have assumed here that 4j(S, MS , n - 2) depends on the spin coordinates s... s.)

We have not written the explicit form of e, f, and g in terms of the Lj(S, MS , n - 2)'s

since we shall not need these forms for our purposes.

It is clear that the first p functions in (4-51) 4i(S, MS , n) are those correspond-

ing to a'(Plz)i = -1, i = 1 ... p. The second na - p functions correspond to ra'(Pl,) i

=+ 1, i = p + 1... na . From the method of construction the functions Lj(SM S n),

j = 1 ... p form a basis for an irreducible representation of the group of permutations

of the last n - 2 coordinates. Let us call this representation F' '(P) where P is a

permutation which leaves 1 and 2 unaffected. For one of these permutations we have

p =(_ (4-52)
(P)a(P

Let us consider permutations not in this group, namely PI 1 and P21 Here I lies be-

tween 3 and n. These have matrices which we can block off as in (4-52)

J~~~ (P'( 11
al(P1 ) = (4-53)

From the fact that r (Pl,) r,(Pli) r,(Pl2 ) = r'(Pzj) we conclude
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ra(P 1 ) = (4-54)

-B ra" (Pll)

We shall actually be able to find r''(P,,) because of the restrictive nature of the spin

product functions. We first notice that

Sa (P1 1 ) 0

ra(P11) + r(Pzl) - (4-55)

0 2 , ,(P 11

We also notice that

(PI + P1 1 ) i(S, Ms , n) j = 1 ... p

(4-56)

= (Pl1 + P()r (S ' M, n - 2) a(l) P(z (Z) P(1)]

Since qi contains in its decomposition into spin product functions, functions containing

either a(1) or P(1)

J (S, MS, -2) = Xj+(s 3 1-l1+ 1 ' (4-57)

+ Xj-(s 3  I -' S1+ 1 .. Sn) )

Combining (4-57) and (4-56) we see that

(PT1 + Pa) +j(S, M s , n) - qi(S, M s , n)

or r a,'(Pll)* + r ,'(P2z) = 1 (4-58)

or r,(P 11) + r.(p 1  = -
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Or, finally

P1 -. 1 A

r(P = (4-59)

B r,,(p1 )

We are now in a position to define the secular problem for the states arising from the

wave functions j = 1 ... p.

iH°i H

n.1 ok ( jj0

/i . (P) §, H Po)
= a(' H jko)

HP I

where

V(P) = (§ , HP S

= (Pf4o, H~O

As we did for the case of the n distinct orbitals we can simplify this expression by

using the orthogonality of the orbitals. We shall assume that the set of orbitals 3

n are distinct and orthonormal and in addition orthogonal to l " "2" It is clear
from the fact that our Hamiltonian only involves two-electron operators that if Pf
has more than two functions "out of position", considering 41 and , as identical V(P)

(4, H P I) = (P f o H 0) will vanish. The only way that we can have this situation

is to have for the P's giving non-vanishing matrix elements P -E, Pij' Pij P12" We

may also notice that KI f = K 2 1 , Jl = J21 K 1 1 = 1 K 12 = 11 K2 2 =22
Therefore, we have that

V(E) = 2Q 1 +Jl + 2 - 1 +k m
11 m m (4-61)

V(PKm) Kim I,m # 1, 2
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V(P 1 2 ) = V(E)

V(PImPlz) = V(Pm) I,m I 1 2 ((4-61) con'd)

V (P j)  V (P lj P l )  = V (P Zj)  = V (P zj P ,Z )  = K lj j J 1, 2 -6 ) w
From these expressions for the matrix elements of the Hamiltonian matrix (4-60) we

see that we only need the matrix elements I'(P)k where j, k = 1 ... p from the ma-

trices ra ( P ) . Using the forms of the matrices representing E, Pij and Pij P12 we

obtain (since Pij for i, j 1, 2) is a permutation of the last n - 2 coordinates) from

(4-46), (4-55) and (4-59)K Hk 1 [V(E) + V(Plz] 5+k

Hk 2 1 m

•+ [Z K)g K11 l 12: 2 E 1 z 1 1 2

I m$ 1 Z (4-62)

Ha = [Q 1 
+ J 1 1 + Z J1 1 

+  .]
Z O#m

I'm $i1, 2
+ X ra, (Phn)Kim

I,m
1,ml Z

We notice that we need only the matrices (P, M) representing transpositions amongst

the last n - Z coordinates. In other words we have just the matrices forming an irre-

ducible representation of the group of permutations of the last n - 2 coordinates. This

makes sense since the two electrons in the filled orbits form a singlet and the only spins

which are admissable are those which arise from the remaining n - Z electrons. As

far as the secular equation connecting states of the same symmetry is concerned, the

splitting of levels is due only to exchange integrals between the unpaired orbits. The

energy expression for the case of more than one paired orbital is also easily obtained.

We shall not discuss the derivation in detail since they follow in a straightforward

manner from the case of one paired orbit.

If +3 = 44 we could choose the matrix ra,(P 3 4 ) to be diagonal with the di-

agonal elements + I or - 1 with the + 1 diagonal elements appearing first. We could

then easily show that the normalized wave functions obtained from projection operators

would be

4.
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i. =v .ii.. (4-63)

13 4ni ij t
S S SpS

(The factor 4 arising from the fact that to = P1sto Pto = P 2 P3 4 o") The
wave functions I.a. would now vanish for all j corresponding to the negative eigenvalues

1.1

of rI(P34) in addition to its vanishing for all those j corresponding to a negative eigen-

value to P 12. Once again we could correlate the positive eigenvalues of ra,(P3 4 ) with

spin states where the third and fourth electrons are in a singlet state and in calculating

the Hamiltonian matrix we would find that we only needed to know the matrices repre-

senting the permutations of the n - 4 electron problem. We could carry on this proced-

ure if there were more filled orbitals. Let us assume that the first Zp orbitals are

paired. That is

t3 = 4
(4-64)

@2p-I '1@Zp
I.

The remaining n - 2p orbitals are unpaired. All distinct orbitals we shall take as forming

an orthonormal set. In this case the wave functions would be

: PM a 4 (4-65)i: N/ Tj r ij 0

~~~~~Lnr(P) which has first al)dagnlwtaboc

If we choose the representation (P ) diagonal with a block

of + l's and a block of - l's and then divide the + 1 block making a representation where

a,(P 34) is diagonal with blocks + 1 and - 1, etc., then for our Hamiltonian matrix of

this symmetry we obtain

P
H2Q + 4J - 2K] + 2

,+ 1 2J j-K j+ i Jij
+, x [] Zj(4-66)

+ r r (P..) K.
i>j a 13

const + Z r" (PiJ) Kij

Here the summation over theGreek indices runs over paired orbitals (I ... p). The

summation over the Roman indices runs over the n - 2 p unpaired orbitals. The matrices
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r' (P..) are an irreducible representation of the n - Zp electron problem and corres-

pond to one of the multiplicities of that problem. The spin functions which form a

basis for the spin permutation representation associated with r (P..) are the spin

functions

[a(1) B(z2,- I3(1) a(2,] [a(3) P(4)- P(3) a(4, [C(p- 1) P(Zp). - P(2p 1) a(2pJ

I/F (4-67)

Xq(S, MS, n - 2p)

where 4i. forms a basis for an irreducible representation of the permutation group of

the last n - Zp coordinates. It is clear from this that the functions in (4-67) also form

an irreducible representation of permutations of the last n - Zp coordinates.

Before leaving the problem of paired orbitals we can derive expressions for

the average energies of all states of a given multiplicity for the n electron problem

arising from the wave functions P 5 §0 where § has paired orbitals and n - Zp unpaired

orbitals. In order to do this all we need do is to take the character of all the matrices

in (4-66) since this gives us the trace of the Hamiltonian matrix H a . This traces

when divided by the order of the matrix gives the average energy of the states of a

symmetry. We know from the property that a trace of matrix is invariant under a

unitary transformation that we shall not change this average energy if we diagonalize

the Hamiltonian matrix ( H a). This of course is nothing more than the average energy

of all states of a given multiplicity since there is a one to one correspondence between

a and multiplicity. We know, however, that the characters of all the matrices r C(Pij)

are the same (Xa(Pij)). From Eq. (4-9) and the subsequent discussion in that section

it is easy to see that the average energy of states of spin S when there are p paired

orbitals and n - Zp unpaired orbitals is given by

ZZQ+ X 1 1 + Z~
i+= =: [2 ,  K '(468

R, v i>j
_____2 n 2- _ n' + sis + 1Iz Ki n' = (n - 2p)

n'(n' - 41>)i

This completes the discussion of the paired orbitals. We can go even further in the

discussion of the vector model by discussing the interaction between the states PS § 0

and PS § o' where Ic0' is composed of a product of one-electron functions in a different

way than Io" This is called configuration interaction and we shall discuss this next.

4
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C. Configuration Interaction

So far we have assumed that as far as the spatial part of the many-electron

wave function is concerned we could restrict ourselves to the states arising from the

functions P 5 I o where o is a product of one-electron wave functions. It is clear that

in order to form a complete set as far as spatial wave functions are concerned we
5must include more than the functions P 1o. Thus we might imagine that for the co-

ordinates of one electron the functions 1 I"... form a complete set. For the many-

electron space we could form a complete set by taking all possible products of this

complete set of one-electron functions. We would take a product of one of the 4 's of

coordinate one times one of the 4's of coordinate 2, etc., down to the coordinates of

the last electron. This gives us a way of forming many electron functions in terms of

which we could expand any arbitrary function. Thus for any arbitrary function of the

spatial coordinates of n electrons, f(r 1 ... rn) we have

f ( 7A 4(r(r4-9f( q ''" ... =  q1  .. ,q(rn) (4-69)n ql ... q n = I ql, qZ'.." qn q, qrl)

Here A are constant coefficients. So far in our discussion of the vector model
ql ... qn

we have restricted the spatial parts of our wave function in such a way that the only

functions appearing in the summation (4-69) are those which can be obtained from one

another by permutations of the spatial coordinates. The wave functions which arise

from these restricted functions we say arise from a single configuration. A configura-

tion is specified if we specify which one-electron orbitals are occupied and how many

times each is occupied. (In order to be consistent with the exclusion principle an oc-

cupied orbital must be occupied either once or twice. ) The spatial wave functions of

a single configuration are therefore taken from the functions P 5 o where 4o is a prod-

uct of some selection of our complete set of one-electron functions. Since these do

not form a complete set we shall have to relax this restriction and include more con-

figurations in our problem to form a good approximation to the many-electron wave

function. The problem of finding the wave function as a combination of the functions

taken from more than one configuration is the problem of configuration interaction.

We can form the states PS 1 o , PS4 1  PS 1 , PS v . Here the single index

1A specifies which one-electron functions are occupied and how many times each is oc-

cupied. It thus specifies a configuration. We now wish to express our many-electron

wave function, as far as spatial coordinates are concerned, as a linear combination

of the functions pS o... pS . We need only consider linear combinations of

functions transforming according to the same column of the same irreducible repre-

sentation. This we can accomplish by means of the projection operators. We can

form the states
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c (4-70)

Here v is the jth function transforming according to the it h column of the a irredu-1th
cible representation arising from the v configuration. c is a normalization con-

a, Vstant. We wish to form linear combinations of these functions for fixed a and i to form

the best possible approximation to the wave function transforming according to the ith

column of the a irreducible representation. This we do, as usual, by minimizing the

expectation value of the energy by variation of the linear coefficients in the expansion
of the wave function. In this way we become involved in the solution of secular equa-

tions. We must find, in this procedure, the matrix elements of the Hamiltonian with
respect to the functions §i! 11adOL, 'o iedaadi

This can easily be done if we assume that our one-electron orbitals are or-
thogonal. We shall recall that for a given configuration some of the functions il': Iij
vanished if there were doubly filled orbitals. Let us say that the configuration v has

P1 paired orbitals, the remaining n - 2p being unpaired. Of all the configurations

considered, let us assume that v has the maximum number of paired orbitals and we

shall assume that in iV these paired orbitals appear in the product first. We shall

also assume that in all the other configurations considered the paired orbitals appear

first. In this case, we chose as the representation ra (P) for the symmetric group of

degree n a representation where ra(P1 2 ) is diagonal with +1's appearing first along

the diagonal. We can further specify the representation by demanding that r a(P 3 4 )

be diagonal in such a way that the + 1 diagonal elements corresponding to the + 1 di-

agonal elements of r a(P1 2 ) come first. In a similar way we can proceed until we have

diagonalized r (P1 2 ), r(P 3 4 ) ra(P2pv - 1, 2p )' We then block off columns of
matrices ra(P) such that the column blocked off corresponds to all + 1 's in the upper

left-hand corner of all the matrices ra(P 12 ) " " " ra(P2 pv - 1 2P,p). Let us say that

the first n V columns of the matrices r(P ) have + 1 along the first n V diagonal elements

of all of the matrices r (P 12 )... ra(PzPl- ).(-6S In this case we recall that for

a given configuration 0 we would obtain (Eq. (4-65)

*j'IijVaa for j < n

2 PAn! a(4-71)

* != 0 for j > n

For the matrix elements between the i and the j' configuration we would have only
jknIL, ( k =1H..'nI'

Hi ILI H (" HI = 1. . n '  (4-72)
jk i• a a
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or
HQ; 1, 11, H ta

V'2P zP5 W(4-72)
r (P)k( , H PS I)

For the matrix elements from one configuration we have

_C' 1 1 Zr(P)* HP 5  ) s . n L (4-73)
2 pL P a jk a

Here and in (4-72) r (P) are matrices forming an irreducible representation of the

symmetric group of degree n taken to be in the specified form for the matrices r(P. 12 )

r " -1, p) which we mentioned above. As far as the configurations L and '

are concerned the Hamiltonian matrix would be
n' -

a a

a; nit Ha;; , 4

(4-74)
nR a;,g) a; ', 4

To find the energies all we need do is subtract I E from this matrix and solve for the

roots of the resulting secular determinant.

We could go still further and use the orthogonality of the one-electron func-

tions to write explicit forms for the matrix elements (I, H PS t). We can see, for

example, because of the orthogonality of the one-electron orbitals, that I and 1 , can

only differ at most by two orbitals or else there would be no matrix element connecting

these two configurations. We shall not pursue this any further since this runs along

the same lines as our considerations for a single configuration.

There is one further extension which we could make in the discussion of

the vector model. We have assumed that the one-electron functions which we have used

are orthogonal. If this were not the case many complications would arise. These can,

however, be formally handled in the framework of the vector model. The first thing

that would change would be the normalization of the functions §.: v a For13 = C,a 13~v Fo

non orthogonal one-electron functions in order to normalize V.:? we would demand
1.
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; 1 13 13a' , .:jv

2 n'
-c

c 2 n. P s(-5
V,CLn V a3 V

v, o XrP) Psi (4-5)

S (P) = (§,P s)

S)(P) can, of course, be expressed as a product of the one-electron integrals of the

products of pairs of one-electron functions. The only quantity necessary to evaluate

c is
1', a.

Sr a(p) s V(P)
P

This may not, in general, be an easy expression to evaluate. Formally, at least, we

can normalize the function in this manner. To complete the discussion of the vector

model for non orthogonal functions we need only find the Hamiltonian matrix with re-

spect to the functions § ! v and a, In this'case the functions would not be orthogonal13J ij'
and as is familiar we can set up the secular determinant by taking the matrix elements

of H - E with respect to §.' v and § " v. We must be careful to remember that in this
13 13

case in the form of the Hamiltonian matrix higher permutations than transpositions

can occur in

*

ra(P)., V c '(§V' (H - E)v,)

There is no basic reason why the vector model cannot be used for the non orthogonal

functions even though the labor becomes more formidable.

This completes our discussion of the Dirac vector model. In the next section,

we show how this method is related to the familiar determinantal method.

D. Relation to the Determinantal Method

We have seen how, through the use of the Dirac vector model, we can find

approximate eigenvalues and eigenvectors for the n electron problem. In essence,

we treated spatial coordinates and spin coordinates separately and then formed totally

antisyi.imetric states at a late stage in the formalism. There is another approach to

the n electron problem which forms approximate antisymmetric functions right at the

start. This approach is the determinantal method and we shall give a brief description
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tof this procedure and then show the relation of it to the vector model.

In the determinantal method, we again start with a complete set of one-electron
: ~spatial orbitals 1""l 1.. As far as spin functions are concerned a and P form a

complete set for one electron. We could, therefore, form a complete set of space-spin

orbitals for one electron by taking all the functions 1" .... and multiplying them

by a and then by P. Thus the functions ,( rl) a(l); 'k( 1) 1(1), I = 1 ... o form a com-

plete set in the spin and spatial coordinates of the electron 1. A complete set of func-

tions in the space of n electrons (including spin coordinates) could be formed by taking

the products of any choice of the functions 4 (r-) a(n) for the n electrons and multiplying
them together. We know that we must obey the exclusion principle, so that, we must

make linear combinations of these product functions to form functions that are totally

antisymmetric. This is most conveniently done by forming determinantal wave func-

tions.

Determinantal wave functions are formed in the following manner. Let us say

that

xi( 's ) = 1) ( i=1... n

are n one-electron space spin functions which we wish to use in forming an antisym-

metric wave function. We could form the determinant

X1 (l) ......... Xl(n)

x?()(n...... )

(4-76)

Xn(1) ......... Xn(n)

- I (-I)Pp P rX1 (' , sl) X2 '2 ,S2 ) ... Xn(nS n
/! P

(The factor I is a normalizing factor if the O's are orthogonal and normalized.) We

could, of course, form a great many determinants in this way each of which would be-

have, as we see from the definition, antisymmetrically under simultaneous permuta-

tions of both space and spin coordinates. These determinants would form a complete

set as far as totally antisymmetric functions of the space and spin coordinates of the

n electrons are concerned. We could then, in principle, take matrix elements of our

Hamiltonian (4-11) between these approximate wave functions and get wave functions

which form approximations to the wave functions for the n electron problem.

We know, however, that our work will be simplified if we take combinations
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2of these determinantal wave functions which are eigenstates of S and Sz, the total spin

operators. If we do this, we know that there are no matrix elements of the Hamiltonian

between states of different S or M S since S 2 and S z commute with the Hamiltonain.

Thus to start an approximate calculation it is best to start with those linear combina-

tions of determinants which are eigenstates of both 52 and S z . This is usually accom-
plished by taking all determinantal states which involve the same spatial one-electron

orbitals but with different spin orbitals assigned to each spatial orbital and forming

proper linear combinations of these states to diagonalize the operators involved. Thus

if %l "" n were the n spatial orbitals involved and they were all distinct we could

form 2 n determinantal wave functions by taking the product of any spatial orbital i

i = 1 ... n and either a or P spin. (In the event that two of the spatial orbitals '1 "'"

were the same we would have to put this spatial function into our determinant once

with a spin and once with P spin to obey the exclusion principle. We would therefore

get only 2 determinantal states. ) We could then make linear combinations of these
2

states and diagonalize S and Sz . This can most easily be done through the use of the

vector model and in doing so we shall se how to pass from the determinantal method

to the vector model and back again.

K xWe wish to form those linear combinations of determinants which are eigen-
states of S2 and S and which involve the spatial orbitals €1 " n (We assume these
sz
to be distinct. The case of paired orbitals will follow in a straightforward manner and

we shall leave this to the reader.) We had formed the states, in the spin coordinates

of the n electrons, i(S, MS, n) i = 1 ... na which were eigenstates of S 2 and Sz and as

we noted earlier these states formed a basis for an irreducible representation of the

symmetric group of degree n. If we now take the product

Io i(S, Ms, n) = 421(1) %2(2) ... 42n(n) 4i.(S, MS, n) i = I ... n (4-77)

we have a function which is an eigenstate of IS and S z . It is not, however, antisymmet-

ric. Let us do this by antisymmetrizing it.

1 ( P-0 SS) (4-78)

This is also an eigenstate of S 2 and S since S2 and S commute with P SP. It can

also be written as a linear combination of the determinantal states we have written

above. This is because the ,i's are linear combinations of spin product functions.

Thus 0o i(S, MS , n) is a linear combination of to = 01 (1) .. . n(n) and products of a's

and P's of the spin coordinates 1 through n. These when antisymmetrized will lead to

a sum of determinants in (4-78) which is an eigenstate of S 2 and S . In each determin-z
ant will be n one-electron space spin orbitals (products of the O's with either an a or
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a P). Thus, in this way, we have formed linear combinations of determinants which

are eigenstates of S and S z . As far as wave functions involving the n spatial orbitals

01 ... On are concerned we would have to calculate the eigenvalues of a matrix of inter-

action of order na corresponding to all states of a given multiplicity and MS in (4-78).

We shall be able to show that this matrix is exactly the one that we get from the Dirac

vector model by only considering the spatial orbitals 01 "" " -nN

Let us first note that we can rewrite the wave function (4-78) in terms of the

functions fa. (4-29). We know that 4i(S, M S , n) forms a partner in a basis for an irre-'3
ducible representation of the symmetric group of degree n. Let us call this representa-
tion pa'(P)* = '(P) X r a(P)* where we have chosen the representation in this form

for simplicity. We can now make use of this fact in (4-78)

/n!1I l(p ~p o (, Ms,n)
(p)pPIps

S1 r'(p)zpS (s Ms  n) (4-79)
i P CL i a'0 P i

Using (4-29) we obtain

Zo (-I) P p a 0 0,(S, Ms, n)P 0o M5 ,(4-80)

- I (j SM S , n) j 1... n

This is exactly the antisymmetric wave function which we obtain from the vector model

(Eq. (4-35)). Let us now see that the Hamiltonian matrix we obtain from the functions

(4-78) is exactly the same as the one we obtain in the vector model. We must find the

matrix elements of the Hamiltonian (4-11) between the j and j' function in (4-78). Us-

ing (4-80) we obtain

H., -( 4y H * (4-81)

33 n a 13 1j ~it1

using the orthonormality of the functions i we obtain, because the Hamiltonian does

not depend on spin coordinates, from the integration over these spin coordinates

_- H0 (4-8Z)
ii n C, ia i i

F aa H

From Theorem 15 ( in, H ij,) = (Ikj, H9kj,)' We therefore have finally that
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Hj, = ( 0i ' HI,.,) (4-83)

Comparison with (4-31) shows us that this is exactly the Hamiltonian matrix which we

obtain from the vector model. Thus, the determinantal method and the vector model

are exactly equivalent in the results they arrive at as far as the energy and the approxi-

mate wave function are concerned. In addition the considerations of this section have

led us to a method of making antisymmetric states of definite multiplicity and MS from

the functions 4i(S, M S , n). These, we shall recall, could be obtained through the use of

the projection operators made of the spin permutation operators. The equivalence be-

tween the vector model and the determinantal method for the cases of closed shells and

configuration interaction also follows through in a trivial manner.

12
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Chapter V

SPACE GROUPS

In the preceding chapter we considered some of the invariant properties of

the Hamiltonian (3-47) of Chapter III. We considered, in particular, the invariance of

the Hamiltonian under permutations of the spin and spatial coordinates. In addition we

mentioned that the Hamiltonian (3-47) of Chapter III was invariant under other opera-

tions. In this chapter, we go on to discuss some of the possible additional invariances

of the Hamiltonian using as an example the invariance of certain Hamiltonians under

space groups.

We notice first that the Hamiltonian (3-47) of Chapter III is invariant under

any spatial operation which preserves distances. Such coordinate transformations are

called orthogonal coordinate transformations. Thus, if the three cartesian coordinates

of all the particles involved simultaneously undergo the same orthogonal transforma-
7 tion our Hamiltonian will be left invariant. In the next section, we discuss such length

preserving transformations.

1. Orthogonal Transformations

Let us denote the three cartesian coordinates as x 1 , x 2 , and x 3 . The most

general linear combination which these coordinates could undergo would be a transfor-

mation of the form

xl, R 1 1 X1 + R 1 2x 2 + R 1 3x 3 + t 1

x2 =R 2 1 x I + Rzxz + R 2 3 x 3 + t 2  (5-1)

x3 ' =R 3 1xI + R 3 2 x 2 + R 3 3 x 3 + t3

In vector and matrix notation, we have

, = R '+T (5-2)

(Here ' is regarded as a column vector x).) In order to be a length preserving

transformation, if we had two points rand y and let them undergo this transformation,

we should demand that

Ix1  - y112  + Ix2  - y2 l2 + x3 - y3 
2  = x1' - y 1 + Ix ' - y2'12  Ix I- Y3' 1

(5-3)

where we have restricted ourselves to letting the coordinates take on only real values.

The restriction of having a length preserving transformation puts a restriction on R .
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Thus, if y"= - ' -2

y ") R R( - )

(5-4)
'2 '2 '2

As is familiar from elementary courses on matrices this demands that R be a real

orthogonal transformation (see footnote on p. 53)

1R =i
(5-5)

=R 1

Thus we see that the most general transformation which preserves lengths is one of the

form (5-2) where R has the property (5-5). The part of the transformation can be

considered as a translation of the coordinates and we shall now proceed to interpret R.
We first notice that since RR =I and since det = det R

(det R) 2 =1
(5-6)

det R t 1

Thus the determinant of the transformation can be either - 1. We also know from the

fact that any unitary matrix can be diagonalized by a unitary transformation that we

can find a unitary matrix U such that

Ut RU = O (5-7)

where D is a diagonal matrix the diagonal elements of which are solutions of the secu-

lar determinant being set equal to zero.

det [R - Xij = 0 (5-8)

since R is a real matrix it is a familiar theorem from algebra that the roots of this

equation must be either real or complex and the complex roots must appear in pairs

one member of the pair being the complex conjugate of the other member of the pair.

Thus we see that in order to have det R = * land a solution to (5-8) we can always put
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D in the form

1 0 
0

D (0 0) ~ (5-9)
0 0 e

If we now let D undergo the unitary transformation

/i 0 0

V~ 1//2 i/ (5-10)0o I14 A- -il /2
we shall, as simple matrix multiplication shows, put D in the form

1 0

R cos -sin4 (5-11)

( sin cOs

Thus we see that any real orthogonal coordinate transformation in three dimensions can

by the use of the transformation UV be put in the form (5-11)

R' = V RUV (5-1)

It is also not difficult to show that UV is a real matrix. Therefore, the transformation

of coordinates UV is again a real orthogonal coordinate transformation. We see there-

fore that any real orthogonal coordinate transformation R can be put in the form (5-12)

by a real orthogonal coordinate transformation. R' is easy to interpret. If we take the

+ sign in (5-11), in the coordinate system described by the transformation UV, R'
represents a rotation clockwise through an angle 0 about the x I axis. Thus

1 1

xz' =cos 4x -sin x3  (5-13)

x3 = sin x2 + cos x 3x3

/x31 If we take the - sign in (5-11) we have R' interpreted

*as a rotation through 0 in the x2 -- x3 plane followed

by a reflection through that plane.

In this manner, we see that in three dimen-

/ sions we can interpret every real orthogonal coordin-

_ _ _ _ate transformation as either a rotation about an axis
4 2or a rotation about an axis followed by a reflection

x , through the plane perpendicular to that axis. The

pure rotations have det R = + I and are called proper
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rotations. The rotations followed by reflections have det R = -1 and in this case are

called improper rotations.

It is clear that the collection of all real orthogonal coordinate transformations

form a group. Some other facts are immediately obvious. The collection of all proper

rotations forms a subgroup of this total group of all real orthogonal coordinate transfor-

mations. This group is called the pure rotation group in three dimensions. It is also

clear that the product of two proper rotations is a proper rotation as is the product of

two improper rotations. The product of a proper and an improper rotations is an im-

proper rotation. From this we see that in any finite subgroup of the group of real or-

thogonal coordinate transformations there is either no improper rotations or as many

proper as improper rotations. It is also not difficult to show that the complete group

of orthogonal coordinate transformations can be considered as the direct product of the

pure rotation group and a group consisting of the inversion

i - -1 (5-14)

and the identity. (This latter group clearly commutes with the full rotation group.)

We can also show that the collection of all coordinate transformations of the

type (5-2) where R is a real orthogonal matrix and T is arbitrary forms a group. We

shall show this a little later on and also show that the collection of pure translations

x' = x + (5-15)

forms an invariant subgroup of this group of transformations (5-2). The Hamiltonian

(3-47) of Chapter III is invariant under this group if we let the coordinates of all the

particles undergo the same transformation. Since we know that the eigenfunctions of

the Hamiltonian must form bases for irreducible representations of the group of the
Hamiltonian, we should study the irreducible representations of the full group of pure

rotations in three dimensions. This is a lengthy topic in itself and we shall not pursue

it in this set of notes. It is discussed in great detail in other texts.

The Hamiltonian (3-48) in Chapter III in which the nuclei are held fixed is in

general invariant under some subgroup of the full group of real orthogonal coordinate

transformations and in the case of crystals is also invariant under certain translations.

In the case of molecules (outside of linear molecules) the Hamiltonian is invariant under

only a finite subgroup of the full group of real orthogonal coordinate transformations.

For example, we have discussed the group C3v which leaves the ammonia molecule in-

variant. This is a finite subgroup which has proper rotations E, C3 , and C 3 2 and im-

proper rotations ,, a-,, and r 3. From this we are able to say that the eigenfunctions

of the ammonia molecule must transform irreducibly under the group C 3 v of spatial
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electronic coordinate transformations. As far as these proper-and improper rotations

are concerned the eigenfunctions must transform as either one of the one-dimensional

representations or as the two-dimensional representation.

We shall not go into a discussion of the groups which leave various molecules

invariant since these are in general rather simple groups the character tables and ir-

reducible representations of which can be found in many texts. We shall, instead go

on to discuss crystals which are in general invariant under translations as well as ro-

tations. We shall, from this, gain a familiarity with certain groups of importance in

jmolecular physics as a by-product. Before doing this it will be to our advantage to in-

troduce some convenient notation.

We shall be dealing with coordinate transformations of the form (5-2). Let us

denote the operator corresponding to this coordinate transformation as

{R JT'J (5-16)

This operator corresponds to the coordinate transformation x' = Rx+ t. This conven-

ient notation is due to F. Seitz. In order to become familiar with this notation, let us

K, see how we multiply two operators. This corresponds to two successive coordinate
transformations. Let us first apply the transformation

= RZ+T

and then the coordinate transformation

x1= Sx ' + T, (5-17)

By direct substitution we see at once that

= S(Rx'+T) +TI' (5-18)

= SRZ+ Si' + T'

St + t' is, of course, again a translation. We have, therefore, as our basic rule for

the product of two operators of the type (5-16)

{ SI T'} {R IT} = {SRI T + st} (5-19)

Let us now find the inverse of the operator {R It. We can see from our rule for ma-

trix multiplication that the inverse is given by
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-RIt (5-20)

The existence of R- follows at once from the fact that R is a real orthogonal matrix.

From its definition the operator {R It can be interpreted in the following way. We

first apply the proper or improper rotation R and then translate through a vector dis-
tanc rreal

tance t. A pure translation will be fEtfr where E corresponds to the identity real

orthogonal matrix. A pure rotation (proper or improper) would be {R 1 0}.- The opera-

tor which corresponds to leaving the coordinate system completely unchanged is the

operator {E 1 0}. In the future we shall modify our notation somewhat to correspond to

the notation prevalent in this field and denote the unitary operators corresponding to

real orthogonal coordinate transformations by a small Greek letter a, 13, etc. (the iden-

tity will be denoted by c). The translations will be denoted by the letters a, b, c, d,

etc.

We shall now show, using our convenient notation, that the collection of all co-

ordinate transformations of the type x' = Rx + t forms a group where R is a real or-

thogonal matrix. Thus, if we have the operators {air } and {13 IT' the product also

corresponds to a coordinate transformation of the type (5-2). The existence of an in-
verse we have already demonstrated and the associative law follows at once from the

definition of these operators. The identity is the operator rel 01. The fact that the
collection of operators {cIt} (pure translations) forms an invariant subgroup can also

be shown easily. These operators form a group since

{tI~ f~l') &itt'1(5-21)
That the operators form an invariant subgroup of the operators fa It t can be shown

from the fact that

-l1 -1-.-+ -l-I- tI 1t'}{ aIlt} I fa ta tI {cit}{o-,-o* r {,r, {or}= {Eoat}

The last operator in (5-22) being again a pure translation. Thus, we see that the col-

lection of all possible pure translations forms an invariant subgroup of the collection

of all real orthogonal coordinate transformations followed by translations.

The Hamiltonian (3-47) of Chapter III is invariant under all operators of the

type (al tI where a corresponds to a real orthogonal coordinate transformation and t

is a translation. The Hamiltonian (3-48) of Chapter III with the nuclei held fixed is

generally invariant under some subgroup of the group of all operators (air}. If we

consider operations only on the electronic spatial coordinates when considering the
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Hamiltonian (3-48) of Chapter III, the Hamiltonian will be sent into itself by operators

fa I-qwhich send identical nuclei into one another. Thus, it would only be for an infinite
solid that we would be allowed to make any translation at all which would send the nu-

clei into one another. It is these infinite solids which we shall now discuss.
The fundamental fact about a periodic solid is that it can be subdivided into

finite unit cells. The entire solid can then be thought of as being made up of these unit

cells. The properties of all the cells that go into making up the crystal are identical

and they can be brought into one another by translations called primitive translations.

It is convenient to make these unit cells as small as possible without altering the fact
that the entire solid can be generated by just translating through primitive translations

one of these unit cells. We can guarantee these assertions by demanding that the solid

*be invariant under translations

Rn n t + nt + n3t (5-23)
n 1 1 2 2 33 (-3

where n i , n2 , and n3 are integers and t , t , and t are three basic translations such

that all primitive translations Rn can be written in the form (5-23). t, and t 3 can

be written in terms of their components along the x 1 , x 2 , and x3 axes.

t t t t \t~ (5-24)
1 12 t t23/ 3 32

These three vectors are linearly independent. In terms of our notation, the solid is

invariant undert {C'n1 where Rn is a primitive translation. In addition, the solid

may be invariant under additional operators {ca a where a corresponds to a real

orthogonal coordinate transformation and a is a translation (not necessarily a primi-
tive translation). We can see that the collection of a's must form a group. In addition,

it is clear that the collection of all primitive translations must form an invariant sub-

group of the entire group which leaves the solid invariant. Thus, we see that if in is

a primitive translation then, since

{I '} {cIgn} {c-II -c 1 I {EI ctnJ (5-25)

al n is also a primitive translation. The collection of all points generated by the vec-

tors i1n is called the lattice. We shall be concerned with the study of groups which
leave a periodic solid invariant and which have as an invariant subgroup a group of

primitive translations. Such groups are called space groups. One interesting property
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of space groups is that there are only a finite number of them. We shall start by be-

coming familiar with the space groups in one and two dimensions for which we can do

a careful job of enumerating all the possible space groups. This will illustrate all the

fundamental points concerning three-dimensional space groups and we shall not do a

complete job of enumerating all the possible three-dimensional space groups.

2. One-Dimensional Space Groups

In one dimension, the basic primitive translation we shall take to be t which

corresponds to the coordinate transformation

x' = x + t (5-26)

The lattice then consists of the points xn = nt where n is a positive or negative integer.

We wish to find all possible groups of operators of the form faI al which contain {,lntl
as an invariant subgroup where a is a real orthogonal coordinate transformation. If

a corresponds to a real orthogonal matrix of dimension one, it must correspond to

either the matrix E = (1) or the matrix i = (-1). The matrix (-1) corresponds to the co-

ordinate transformation

Sx' = ix = -x (5-27)

The first possibility is that our one-dimensional chain is only invariant under

pure translation operators and no other operator of the form c, I al. is permitted. A

figure which has this property is illustrated in Fig. 5-1. The arrows can be considered

to be attached to the lattice points and the arrows

- -- - <- themselves indicate the symmetry.

Fig. 5-1 The second possibility is that the linear

chain may, in addition, be invariant under an operator of the form {il al. If this is

the case it is invariant under all operators {iIa + nt} = {EInt} {ilaa. It is possible

that a may not be a primitive translation. We shall now show that if this is the case

then a coordinate system can be chosen such that a = 0. The transformation correspond-

ingto {iIa} is

x1 = ix+ a = -x+ a (5-28)

Let us now go to a new coordinate system defined by

x = y + q (5-29)

x'= y'+ q
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In this case the relation between y and y' becomes

y' + q = i(y + q) + a

y' = -y -q -q + a (5-30)

y' = -y -Zq + a

Thus, if we choose our coordinate system y such that q = a/Z we find that in this co-

< ordinate system i a} goes over into {i 10 }. In
- -- -- - this way, we see that the only other group con-

Fig. 5-2 sists of the operators (i Intl in addition to the

operator EIntf . This symmetry is illustrated in Fig. 5-2

This exhausts the one-dimensional space groups. We see that there are only

two space groups in one dimension and that for both of them the only translational

parts of the operators involved which appear are the primitive translations. We saw

that one useful trick that we could employ was to perform a coordinate transformation

so as to make the translation a equal to zero. This is a device which we shall employ

to great advantage in our study of two-dimensional space groups. These two-dimen-

sional space groups are much more interesting and we shall proceed with them in the

next section.

3. Two-Dimensional Space Groups

In two dimensions we have a plane figure invariant under a space group which

has as an invariant subgroup a group of primitive translations of the form

Rn nltl + n tz
Rn 1 1  

2 : 2 t

t 2t 21(5-31)

In addition to the primitive trasltins QL' n, it may be that orsaegopcn

tains other operators of the form 1,a1 aj . The part, a, of this operator mustcors

pond to a real orthogonal coordinate transformation in two dimensions. Let us first

see what restrictions we must put on the real orthogonal two-dimensional matrices

corresponding to the operators a. First, we shall see what form real orthogonal two-

dimensional matrices R can have.

A real orthogonal two-dimensional matrix R can be diagonalized by a unitary

transformation U . The diagonal elements of the dtagonalhzed matrix are the roots of

the equation

det(R - 4 ) = 0 (5-32)
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If they are complex, the two roots must be complex conjugates of one another. In this

case

UtRU K (5-33)
co 0 i

By applying the transformation

V (5-34)

we can find the transformation UV such that

/cos -sin
VtUtRUV= (5-35)

\sin cos

It is not difficult to show that UV is real and orthogonal and at the same time show that
its determinant may be made + 1. Thus, one possibility is that R corresponds to a

clockwise coordinate rotation through an angle 0. In this .case det R = + 1 and R can

be written in the form (5-35). This is a two-dimensional proper rotation. The only

other possibility not covered by (5-35) is that the roots of (5-32) are real. The only

possibility in the case of real roots not covered by (5-35) is the case that if R is di-

agonalized it has the form

In this case, det R = -1. These we shall refer to as two-dimensional improper ro-

tations. Any improper rotation can by a real orthogonal coordinate transformation

with determinant + 1 be put in the form (5-36). In this way we see that every real or-

thogonal coordinate transformation can be put in either the form (5-35) or (5-36) by a

real orthogonal coordinate transformation with determinant + 1. Thus, by a suitable

proper rotation every improper rotation can be put in the form (5-36). We see that

this corresponds to the transformation

X = (5-37)

X2 ' - X2

This is just a reflection through the x 2 axis. If we perform a rotation of our coordinate

-135-



(SPACE GROUPS)

system through 4, the matrix representing a rotation through an angle just goes into

itself. Thus

cos' sin, coso -sinl ( cos 0' -sin ' =cos, -sin~l (-8
4)' = ) (5-38)

(-sin 0' Cos -sin cos /\sin 0' cos ('/-sin COS

This is just a reflection of the fact that all rotations in a plane commute.

In analogy to the first section of this chapter, we can see that in two dimen-

sions the proper rotations form a group and that in any Zinite subgroup of the full group

of real orthogonal coordinate transformations in two dimensions there must be either

no improper rotations or as many proper as improper rotations. In this way we have

learned something of the two-dimensional real orthogonal matrices. They correspond

either to a rotation or a reflection through some line. This is not much of a restric-

tion on the group of a's which can appear in faI a}. We shall now show that there are

only a finite number of groups of a's which are possible in the group of all operators

faI a} which have as an invariant subgroup a group of primitive translations.

We find that there are restrictions on the possible proper rotations that leave

a translation group invariant. Proper rotations in two dimensions are of the form

-coso -sin 45\
a -- (5-39)

\sin4) cs)in, COS *

Without changing the form of these proper rotations we can choose a rotated coordinate

system so that the smaller, 1' of the primitive translations t. and t 2 has the form

(t (5-40)

A rotation a must (as we have seen) send this into another primitive translation at1

f = cos4 -sin I1  ft 1 Cos
at1 H i11 (5-41)\sin4) cos 0/ \t11 sin4)/

If tl and at 1 are primitive translations then - a t must also be a primitive transla-

tion

-* ~ 1~ t1 (Cos4-
a t I- t t si (5-42)

\t 1 1 sin /
The square of the length of this vector is 4t 2 sin (,/2). Since tll is the shortest

primitive translation we have
1,

-136-

I



(3. TWO-DIMENSIONAL SPACE GROUPS)

4t 2 sin (0/2) tl2 (5-43)

This means

/3 .< 4 .. 57r/3 or 4 = 0

S=0 is permitted since in this case at - 0. must also be shorter than

S = (tI(cos + (5-44)

This means that

4tl2 Cos (0/2) >tl2 - Zw/3 .< 4 .< Zir/3 or4) = ir, -w (5-45)

In addition if a is an allowed rotation a is also an allowed rotation and a - is a

primitive translation

- osn sin0 (tt, =11) ( 1 cos(5-46)
-sin4 cos/ 0) 0 Kt 11 sin4)(46

Therefore a- t+ aT must be a primitive translation with length greater than

a- = ( at Cos (5-4)

This yields

2 2 2
4tllCos 4 > t l w/3 w <3; 2irf/3 <'0 < 4w/3 or , = /2, 3w/2 (5-48)

The restrictions (5-43), (5-45) and (5-48) leave as the only possibilities proper rota-

tions through angles

0 = 0, /3, 2w/3, 4w/3, 5n/3, w4Z, w, 3w/Z

2 2 5
We shall denote the operators corresponding to these by E, C6 , C3 = C6 , C3 , C6

C4 , 042 = C2. C4 3 respectively. All of these rotations cannot occur at once in a

group of rotations. The possible groups of proper rotations which we can construct

from these rotations are
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Group Elements

E E

C 2 , C 2

C4  E, C4 , C2 = C4
2 , C4

3  (5-49)

C3  E, C3 , C3
2

C6  , C6 , C3 =C 6
2 , C2 C6 3, C3

2 = 4, C6
5

We notice that all of these groups are cyclic.

We have now obtained five groups of proper rotations. We know that a sub-

group of the entire group of all real orthogonal two-dimensional matrices must either

contain no improper rotations (we have enumerated the five possible groups of this

type) or as many proper as improper rotations. The remaining groups of real orthog-

onal two-dimensional matrices which leave a two-dimensional lattice invariant can be

obtained by multiplying all of the elements in each of the groups in (5-49) by a reflection

K oa which we can choose in the form

0 1)

which, in addition to the groups already enumerated, gives five new groups which are

Group Elements

E, o

2v E, C 2, a', TC2

C4v E, C 4 , C2 , C 4
3 , o, 0 4 , oC 2 , oC43 (5-50)2

C3v E, C3, C3
2 , o, oC 3 , OC 3

2

2 5 2 5
C6v E, C 6 , C 3, C z , C 3 , C6 , T, O-C6 , oTC3 , 0-C, aC 3 , aC 6

These groups can be visualized by the figures which they leave invariant. These are

illustrated in Fig. 5-3.
We have now seen that there are only ten possible groups of real orthogonal

coordinate transformations in two dimensions which would leave a two-dimensional

lattice invariant. Thus, in space groups of two dimensions with operators of the form

f IJ in order to have a group of primitive translations as an invariant subgroup the

collection of a's in these operators for a given space group must form one of the ten
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C3v C6 v

Fig. 5-3

possible groups given in (5-49) and (5-50). The group of a's corresponding to a given

space group is called the point group and in two dimensions there are only ten possible
point groups.

We shall now go back and show that not all possible groups of primitive trans-

lations (5-31) are left invariant by a space group having a given point group. We shall

find that restrictions are put on the two primitive translations t and t 2 depending on

which point group the entire space group corresponds to. The fundamental fact we shall

use is that if Rn is a primitive translation aR n must also be a primitive translation.

Here a corresponds to an allowed real orthogonal coordinate transformation in two

dimensions. We shall proceed through the ten point groups in two dimensions showing

for each what restrictions are put on the basic primitive translations t and t .

E: Clearly the point group consisting of only the identity puts no restrictions

on the translation group. We can therefore take as our translation group a group

which we call r 1 (see Fig. 5-4).

t t~l
tE I =to. = ( ntl + nZt2  (5-51)

Here tI and t need only be linearly independent.

C 2 : C 2 corresponds to a matrix(: 0)
and sends every primitive translation into its negative. From the definition of primi-

tive translations, the negative of a primitive translation is also a primitive transla-

tion. No restriction is put on the translation group by C 2 and therefore r 1 is the gen-

eral type of translation group left invariant by the space groups which have C 2 as a

point group.

r: In this case, let us choose our coordinate system so that the operator a-

corresponds to the matrix
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Fig. 5-4 Fig. 5-5

Fig. 5-6 Fig. 5-7

Fig. 5-8

41
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(: _)
Let us assume that the shortest primitive translation in this coordinate system is

tl = 2

There are two possible cases either t 1 2 is zero or it is not. If it is not then

ti 1 1 t

(tt 1

is also a primitive translation of the same length and we obtain in this way a group of

translations r 2 (Fig. (5-5)

r 2 :

r IR -j -1 (12 2 t 12  n + t' (5-52)

In the event t12 is zero, we have

t 1 =t )

Let us denote the other basic primitive translation by

t 
If is a primitive translation t+ must also be a primitive translation and expres-

sible in the form n 1tI + n2 2 '

+ t= +21) + (t2= nI( ) + nt22 ~ t2 _-t22) t)2(/

We see at once that n2 = 0. If n 1 = 0, our two basic primitive translations are0: (t02)
Let us denote this group by r 3. (See Fig. 5-6)
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3:
t n t-* n n (5-53)

0 t

If n1 = 1 we have as our basic primitive translations

\ t21

but in this case

t

and t 2 would serve equally well as basic primitive translations since t 2 - t .

This is just the same as r 2 therefore we have nothing new. For n I > 2 we get nothing

new since by subtracting t1 from t2 we can always get a shorter vector than t2 con-

trary to the hypothesis.

SCv: Supplementing the group a- with C z to form the group C adds no new

restrictions so that r 2 and r 3 are also left invariant by C 2 v*

C 4 : We can always rotate our coordinate system for this group of coordinate

transformations in such a way that

tl

without changing the form of the coordinate transformations in C 4 since they are all

proper rotations. In this case

C4~ = 0 .) (i) = (to)
r .4:

{ = 1 ) t2 = () R = n t1 + n t2  (5-54)

(See Fig. 5-7)

C 4 v: Adding the additional operator 0- and its products will clearly add noth-

Lng new to C 4 since the lattice is already invariant under the four reflections in the

group C 4 v provided one of them is chosen to be a reflection through one of the coordin-

ate axes. Therefore r 4 is left invariant by the group C 4 v*

C 3 : We can again choose our coordinate system such that
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In this case C 3 t1 is an independent vector of equal length

-t 22-3.. - i/ 2 + ./ 3a 1 / t

The vectors t and t2 are then inclined at an angle of 60 and we arrive at the group

5 n. 1-*12t 21 =n 1Tl + n2t2 (5-55)fik t-- ( t 2 -3-2t

C 3 v, C6 , C6v: We see at once from the symmetry of the lattice that it is in-
variant under the operations of C6v provided the x1 or x2 axis is a line of reflection
symmetry. This can most easily be seen by putting in the dotted primitive translations

in Fig. 5-8. We see from this that the entire lattice can be generated by a set of hexa-

gons and hence the entire lattice has hexagonal symmetry (C6v). Thus, C 6 v causes no
new restrictions to be put on r 5. Hence r 5 is invariant under C 3 , C 3 v , C 6 , C 6 v* In
this way, we can construct a table of the point groups and the most general type of lat-

tice they keep invariant.

Point Group Lattice Point Group Lattice

E r C4 v r
4v 4

C2  r1  C3 1 5

1, r 3  C3 v 15

Cav T 2 , T 3  C 6  1 5

C 4  T 4  C6v r 5

We can now proceed with the actual enumeration of the space groups in two
dimensions. These groups will consist of operators of the form fa 1: where a is

the rotational part of the operator (proper or improper) and a is the translational part

of the operator. Let us first note that there is a restriction placed on the vectors a
which appear with any rotational operator a. Suppose that f a)I and {Cl were two
operators of the space group having the same rotational part. Since we have a group
of the inverse of f I-qnamely {aL 1i-a b} is also a member of the group. There-
fore we have that fal a I {J' -a b is a member of the group. This yields

fa I a}{ I fc b f~a- (5-57)
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From this we conclude that a - b is a primitive translation. Thus, the translational

parts of operators which have the same rotational part are expressible in the form

a + Rn* We can thus associate a with the rotational part a. We might choose to asso-
ciate with a the shortest translation which appears with a as a translational part. We

can see, therefore, that there are two possibilities. We can either associate with a a
zero translation or some non-primitive translation.

From this discussion, we are able to see one way in which we can form space
groups from the point groups and the lattices that they leave invariant. We could asso-

ciate with every rotational operator the zero translation and then take all possible

products of these operators with the pure translations. In our notation, we take all

possible products of for all a in the point group and the pure translations

We noticed in the case of one-dimensional space groups that it was possible,
by a change of coordinates, to go to a coordinate system where we could associate with

a given rotational operator a zero translation. Let us see how this works out in gen-

eral. We recall that an operator faIt} corresponds to the coordinate transformation

* -'= R +T (5-58)

where R is the matrix corresponding to a. Suppose we now go to a new coordinate sys-

tem y and see what the operator fa It becomes in this new coordinate system. Let

the new coordinate system be defined in terms of the old by the equation

X' = Sy + q(-)

,t,= Sy + q
Here S is a real orthogonal matrix. By substitution we find that

s + R IS + +
(s-6o)

yo = S- RS+ S- [ - + R1

Thus in the new coordinate system the translational part of the operator a lt} is

S-1 - q+ R J . We can always associate with a a zero translation if we can find

a q such that

T - q + Rq = Rn (5-61)

We can, under certain circumstances, determine q in such a way that this relation is

satisfied. In order to find a q satisfying (5-61), we must solve a set of simultaneous
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linear inhomogeneous equations for the components of q. These equations will, in

general, have a solution provided that det (R - 1) 0. Let us see, in two dimensions,

under what conditions this relation is satisfied.

We consider first the proper rotations in two dimensions. In this case, R can

be expressed in the form (5-35) and we can evaluate det (R - 1.)

lcos €- 1 - sin €sn.€

det(R -1) = = 4 sin2  /) (5-62)
sin4 cos -1

The only condition under which this vanishes is for the identity rotation 0 or 27.

We see at once that it is possible in two dimensions to change our coordinate system by
a pure translation q so that we can associate with any rotation the zero translation.

We notice that all the point groups in two dimensions (5-49) and (5-50) either have a

cyclic subgroup of two-dimensional proper rotations or consist entirely of a cyclic

group of proper rotations. If we choose our coordinate system so that we can associate

with the smallest non zero proper rotation a zero translation, then it is clear that all

Kpowers of this proper rotation will have associated with them a zero translation. Hence

it is possible in two dimensions to always choose a coordinate system such that the

proper rotations have zero translations associated with them.

We can now go down the list of point groups in (5-56) and find which space

groups can be associated with each point group. We shall do this in the order of point

groups listed in (5-56) and shall give for each space group the elements whose products

can generate the space group.

t: This is a group of pure translations with no restrictions on the primitive

translations. The group is given by {cI An} where Rn is from the translation group

rI, the most general translation group. In Fig. 5-9, we have illustrated this group.

We have attached to each lattice site in r a figure with no special symmetry.

C 2 : r 1 is again the lattice which is left invariant by the point group C2 . We

might suppose that we could associate a non primitive translation with the operation

C 2 . We have seen from the discussion in the previous paragraphs that this is not the

case since by a coordinate translation we can always eliminate a non primitive trans-

lation associated with the operation C2 . We saw that for all point groups consisting of

nothing but proper rotation operators we could associate zero translations with the ro-

tation operators. In Fig. 5-10 we have illustrated the space group generated by

{C7 10 and 1c11R5n where nis taken from r.

a- Let us consider first the case where we associate with the point group a-

the lattice r It may be that we can associate with the operation a- a non primitive

translation v. If this is the case, the operator {a v is a member of the group as is
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Fig. 5-9 Fig. 5-10

its square

a1 = 11

12

This means that o-" + v must be a primitive translation. Looking back at the definition

of r we see that

-. 1 . 1 V 1 1

a-v +v = - +=

(5-64)

=m(t11) + n (t 11
t 1/ -t 12

From this we see, at once, that m = n and that vii = m t Thus, the most general

form of our non primitive translation is

Since we can subtract primitive translations from this non primitive translation and

since

=tl

the only case we need consider is the case m = 1 or

V (VII)22
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Let us now see if we can eliminate this non primitive translation by a translation of

our coordinate system. In order to do this, we must find a vector q (see Eq. (5-61)

such that

v + q = R n (5-65)

In particular, take

Then (5-65) becomes

\qll) -qlZ tl

3 3
3 3 3 Thus, a coordinate translation with ql 1 arbitrary and

3 3 Zql 2 = t 1 2 - vI, will allow us to associate with

3 3 3 a zero translation. Thus, we get a point group gen-

3 3 erated by {rI 0 and fcIRn} where Rn comes from

3 3 3 r . This group is illustrated in Fig. 5-11.

3 3The next possibility is to associate with

3 3 the point group T the translation group r3 (5-53).

In this case, if we associate with a- a translation v,3 3 3
the equation (5-65), as a condition on v, becomes

Fig. 5-11

= m(j) + n() 
(5-66)

n=0
m

V 1  T 11

Once again, we can subtract primitive translations from v and need only consider the

cases m = 0, 1. Thus, the most general non primitive translation which we can associ-

ate with a- is of the form

v ~m=O,1I

We must now see if we can eliminate this non primitive translation associated with ar.
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If we perform a coordinate translation through q, v goes into Eq.. (5-66) v- q + oq.

If we can make this into a primitive translation, then we can associate with a- the zero

translation

" - q + ( =(- + (5-67)

1 q1  -q 1 2

We can, therefore, by setting v1 2 = Zql, make the second component of the non primi-

tive translation vanish. The first component will only be a primitive translation in the

case m = 0. Thus, we get two new space groups associated with the point group a and

the translation group r 3. The first (m = 0) is generated by {oi0)and {EI n1where

Rn belongs to r 3. This is illustrated in Fig. 5-12. The second is generated by {-}
where

and {CIn1 where In belongs to r 3 . This group is illustrated in Fig. 5-13.

3 3 3 3 3 \ 0--/

3 3 3 3 3 o-- 0

Fig. 5-12 Fig. 5-13

CZv: The operations of the point group are1, 0: ) o1 01 )
(5-68)

1 0) EQ 0)

We can, at once, shift our coordinate system so that C 2 has associated with it a zero
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translation. If we associate with a- the non primitive translation V, then since

{a1 f 101 = {r' we can also associate with T' the non primitive translation
0v. One condition on v is that

S{a } {a-I T= {erk+ -} TV+ v= primitive translation (5-69)

Since the group contains the operator C01 , which is the inversion in two dimen-

sions, {- - is also an allowed operation. Thus, another condition on '" is given by

1 {a- }{-Iv} = {I I TV } 'T - v = primitive translation (5-70)

Let us first consider the point group Cv associated with the lattice r. In this case

conditions (5-69) and (5-70) become

IV
i -- =m +

S0 11 _tla-v _ v = = p +q

v(V = p11) + q(tHl)

We see thatm =n, p =q, and v1 1 =mt1 1 ; V 2 = pt "
1 2  The most general non primi-

tive translation we need consider is

(pt 12 )

We can try to translate our coordinate system to make this non primitive translation
associated with a- a primitive one. In doing so, we must be careful to remember that
we have already translated our coordinate system so as to associate with C a zero
translation. It may be possible to find a translation of our coordinate system which

does not distrub the fact that C. has associated with it the zero translation. In order

to associate with a-, a primitive translation by shifting the origin of coordinates through

q we must satisfy the condition (5-61)

V - q + -q a primitive translation

'mtl) (qI I / 0
- + = t + ) primitive translation (5-71)

\Pt 1 2 / 1q2z \'q1 2  \ t1 2 -1 22
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If we let the primitive translation in (5-71) be

m
then we can solve this relation with q12= p-mV)

t12 We notice that we still are free to choose ql 1

so that C2 still has primitive translations associated

with it. The new translations associated with C 2

is (from Eq. (5-60))

Fig. 5-14

-~ -~-~ I 2q,1C2 q -q Z= -q =
(m -P)tl 2 J

j If we let 2 ql 1 = (m - p) t 1 1 we still have a primitive translation associated with C2 .

The group we obtain in this way is the group generated by (C2 i0; f0 i 0 and e l

where Rn is taken from r2 . There are no non primitive translations in this group and

the group is illustrated in Fig. 5-14.
The next possibility is to associate with the point group C2 v the translation

group r 3 . We again choose a coordinate system such that C2 has a zero translation

associated with it. We assume that a- has the non primitive translation v associated

with it. The conditions on v are (Eqs. (5-69) and (5-70)) given below for the transla-

tion group r 3 .

0-v+v = 1) m(tl) + n )(7

ON -; = ( +(tpl) +2v 12 " 22

We see from these relations that p = n =0 and v must have the form

2 1)22]

By subtracting primitive translations from v we can see that the only cases we need

consider are the cases m= q 0; m - 1, q-0 and m = 1, q = 1.

In the case of the point group C 2v associated with the translation group r 2

we were able to make all non primitive translations associated with r primitive trans-
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lations by shifting our origin of coordinates without affecting the fact that C 2 has as-

sociated with it primitive translations. In the case of the translation group r 3, it

turns out to be impossible to do this. We arrive, therefore, at three new space groups.

The first (m = q =0) is generated by C 2 0} {0; n with R belonging to

This is illustrated in Fig. 5-14. The second is generated by
f I n} with it belon ing and This is illustrated in Fig. 5-15. The{E~~} n e C2  3-Nin wit 3nblnigtoF n (to).
third is generated by C ; f.t + withinbelongingtor andt

This is illustrated in Fig. 5-16.

Fig. 5-14 Fig. 5-15

Fig. 5-16 Fig. 5-17

C4. This is a group with which we must associate the lattice r"4 . As we

have seen, because this is a cyclic group consisting of proper rotations, we can al-

ways choose the coordinate system in such a way that there are no non primitive trans-

lations in the space group. We have a new space group illustrated in Fig. 5-17 and

41
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C4v. For this group the operators in addition to a- and a-' are the rotations of
the group C4 and the reflections

Td ( 0-d .- (_1 -0
If we choose our coordinate system such that the operator C 4 has associated with it a

zero translation, then a-, 0', 0-d ' and G-d all have associated with them a translation v

which may be non primitive. Two conditions on v are, in analogy to our work on the
group - and C2v

-V +;= ( = m(1) + n(o( 11 (5-73
v v,' p + q (o1

From these two conditions, we see that v must have the form

(ti:

: q t

In addition, the condition (5-74) must be satisfied.

adV+V= v= primitive translation (5-74)

n D order for this to be true, m and qmust either both be even or
both odd. If they are both even, v is a primitive translation.

D D D] In this case we have aspace group generated by fC 4 1o1, fal o},
and ('litn} where Itn is a primitive translation of r 4 . This

D El El group is illustrated in Fig. 5-18. In the event m and q are both
odd, then we can, by subtacting off primitive translations from

El~V EElE put vin the form

Fig. 5-18 V (=

t 1 1 /2
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In this case, there is no way of shifting the origin of coordinates which will eliminate

the non primitive v and preserve the fact that C 4 has nothing but primitive transla-

tions associated with it. This space group is generated by fC4 101, 1Iltl+tZ},

and nfEI where Rn belongs to r 4 and = ( t = J This group is illus-

trated in Fig. 5-19.

C 3 : With this point group, we must associate the lattice F5 . The real or-

thogonal coordinate transformation corresponding to C3 is

C3  - l -'/z/ (5-74)
3 22 - 1/2

Since the group is generated by powers of this proper rotation we can adjust the origin

of our coordinate system so that with all the operators in the group we can associate

a zero translatio,. We thus have a new space group generated by ,C3 0) and fE, n)

Here 1n is a primitive translation from F 5. This group is illustrated in Fig. 5-20.

Fig. 5-19 
Fig. 5-)0

C3 v: This point group leaves the lattice r 5 invariant. In the case of this

point group, a new situation arises. If we choose our coordinate system so that one

of the reflections, a., to have the form

there are two possible ways we can orient the lattice r 5 (see Fig. 5-8). The one has

primitive translations
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and the other has primitive translations

.2 tll , t2 r= 2t

S12 t1  - 1/t

In the first case, one of the basic primitive translations lies alofig the x 1 axis and the

other at 600 with respect to the x 1 axis. In the second case, the two primitive trans-
0lations lie at 30 above and below the x 1 axis. The situation does not arise for any

other of our point groups in two dimensions. We must examine these two possibilities.

Let us consider the first of these two possibilities. First, consider the case

where

tl ) (1 2 t1 l)
0= 2t

We may by translation choose our coordinate system so that C 3 has associated with it

a zero translation. If we associate with a- a translation v then we can associate with

the reflections a-' = C 3 and a" = -C3 2 the same translation. In analogy to our pre-

vious work, we can see that we have as a condition on vJ a- = (vi 1/t2l + l (5-76)0-V+ v =n + q
0 0 3/ 2 tll1

From this we see that q = 0 and that v 1 1 = (n/2)t 1 1 . We can by subtractingt 2 from v

over and over again reduce v to a form where v = 0. We also have the condition on

v that tl ( t 1
',,~~ ' r + V " p + m( 5 - 7 7 )

0 3. / 2 t11)

In component form

1/2 -,3 ( .+ = (- 2 1 + m 1l ) (5-78)

- V/2 1/2 2 /2v12 3 y 2 t 1 1

where

0"
I  

G (

,f' 2 1/2 0 - 3/2 ( 1/2)

4.
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From (5-78) we see that v 12 = (m /'3)tl. Thus from (5-76) and (5-77) we conclude

that

We must now see if we can shift our origin in such a way that we can associate with a-

a primitive translation, and still associate with C 3 primitive translations. In order

to find a translation of origin through a distance q which associates with a- a primitive

translation we must make v - q + c-q equal to a primitive translation. (See Eq. (5-60)

In component form

-v q - q0.q + ql)(5-79)
tl 1) q12 -q12/

Thus, if we choose ql, = In._.t1 1 we associate with a- primitive translations. Let us

see what translation this shift of coordinates associates with C 3. Originally we had a

zero translation associated with C 3 . In the new coordinate system, the corresponding

translation associated with C 3 will be

-q + C3 q = +j m 1/2 / - t t1

223 Z /31

-3/2 qll - m (5-80)
4 113qll - t1)

If we choose qll = + (m/2)tll then we have

-q + C 3 q = -m (5-81)

Since this is a primitive translation we have still associated with C 3 primitive trans -

lations. Thus, we see we have a space group whose point group is C 3 v which is gen-

eratedby {C 3 1 0} fr 101, fl In where 11n is a primitive translation of r and

(t 1  2 = (1 t / )
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This space group is illustrated in Fig. 5-21).

We now proceed with the other case where

= I t t 2 = 1 2 t , 

In this case (5-76) becomes

v (2vIi\ mV / tll + n #/Z/2lt, (5-82)
: \l/ tll -1/2 t1l/

From this we conclude that m = n and that vi (m /3/2)t 1 1 . Eq. (5-78) becomes

( 1z v/ z t( + q(/ (5-83)

(3/2 v 2  
/ t1 l / \ 1/2 t 1 )

From which we conclude that

3v 1 2 = (p - q) t1 1

or

v 1 2 = pt 1 1

Thus, we see that V must have the form

(r i ?2 M t 1

We shall not go through the details again, 'but it is possible again to show that by trans-

<<<< AA AA AA

<<<<< AA AA A

<<< A A A A
< < < 1A A

< << << A A A A A A

Fig. 5-21 Fig. 5-22
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lation through a vector q we can adjust our coordinate system so that both a- and C 3

thave associated with them zero translations. We have, therefore, a new space group

generated by C3 1 , n-I 0), and El Rn) where Rn is a primitive translation from
F and

_ = (VTzt 1  t2 = (,'/2t)
12 t 11/ 2i /- 1/2 1ll

This group is illustrated in Fig. 5-22.

C 6 : This point group leaves the lattice 1 5 invariant and consist of a cyclic

group of proper rotations. We can associate with all the point group operators a zeroa nd { ' J w h r -' i
translation. This space group is generated by {C 6 10 and {IR where R is a

primitive translation from r 5 . The group is illustrated in Fig. 5-23.

C 6 v: In this case the lattice r 5 is left invariant. In distinction to the case

of the point group C 3 v' there is only one way we can orient the lattice with respect to

the reflection lines. One of the reflection lines must coincide with one of the basic

primitive translations. We can adjust the origin of our coordinate system such that

C 6 has associated with it primitive translations. In a completely analogous way to

C 3 v, we can simultaneously adjust the origin so that a- has a zero translation associ-

ated with it. Thus we get one new space group. This group is generated by {C6 1 0},

{a 0}, and (Ell n where in is a translation of r 5 and

Jiz

tl 1/2 t1

This group is illustrated in Fig. 5-24.

9. *,- @-- ,-0000oo0oo0
0 000 00

'\70 000 0

VZVW W 00000 0

Fig. 5-23 Fig. 5-24
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This completes our enumeration of the two-dimensional space groups. We

see that they are 17 in number. Of these all but four (Figs. 5-19, 5-16, 5-15, 5-1Z)

have primitive translations associated with all the operators in the point group. The

remaining four space groups have reflections in them which always have a translational

part which is non primitive.

4. Three-Dimensional Space Groups

We shall not, in detail, derive the number of space groups in three dimen-

sions by the process of enumeration. The same processes which we carried out in

two dimensions can be carried out in much the same way in three dimensions.

We would first find that we were limited in the number of point groups which

J ,• we could have. That is, for groups of operators of the from (caii which have as an
invariant subgroup a group of primitive translations (El ,n' the rotational parts of

the operators, a, must form a group. This is called the point group. There are only

a limited number of point groups which leave a subgroup of primitive translations in-

variant. There are only 32 possible point groups or as they are sometimes called

crystal classes.

In analogy to our work on the two-dimensional space groups, we could then

in turn find for each of these point groups what restrictions were put on the lattices

(invariant subgroup of primitive translations) which were left invariant by the space

group corresponding to a given point group. In two dimensions, we found that there
were five latt'2es. In three dimensions, we would find that there are 14 lattices.

These are called the 14 Bravais lattices and vary from one with no restrictions on the

three basic primitive translations to highly restricted ones like the simple cubic lattice

consisting of three basic primitive translations of equal length which are mutually

perpendicular.

We could then go on and start the process of enumeration of the space groups

in three dimensions. We sould proceed by associating with each operator a a trans-

lational part a knowing that in the space group a will always appear associated with a

or a plus a primitive translation. We would again find that there were restrictions

put on a. We would also find that there were two general types of space groups in

three dimensions. One type has associated with every rotational operator in the group

the zero translation. The other type does not have this property. In all, we would

find a total of 230 space groups in three dimensions.

To sum up our enumeration of space groups we find the following. There

are two space groups in one dimension, 17 space groups in two dimensions, and 230

space groups in three dimensions. There are two point groups in one dimension, ten

in two dimensions and 32 in three dimensions. There is one lattice in one dimension,

five lattices in two dimensions and 14 lattices in three dimensions of various degrees
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of restriction. With the familiarity with space groups we have gained we shall proceed

with the problem of their irreducible representations.

5. Irreducible Representations of Space Groups

In this section, we shall discuss the irreducible representations of space
groups and shall evolve a mode of describing and classifying them. This method of
classification makes use of the fact that every space group contains a, group of primi-

tive translations as an invariant subgroup. We therefore start with a description of
the irreducible representations of a group of pure translations. This forms the sim-

plest of all space groups.

A. Irreducible Representations of a Group of Primitive Translations

AWe shall restrict our attention in the general discussion here to three-
dimensional groups of primitive translations, but the generalization to more or fewer

dimensions will be immediately obvious.
Let us consider a group Jof primitive translations E t Here n is

of the form

R =n + n2t + n3t (5-85n 1 1 2 2 3 3 (5

where tI, t 2 , and t 3 are three linearly independent basic primitive translations. In

order to confine ourselves to finite groups, we shall make this group finite in the

following way. We shall assume that

{E~~t 1 f -Et} ={I 3 N ={l}(-86)

This means that the group % is the direct product of three groups (see Chapter III,

Section 3): the group generated by { and its powers, the group {c T} and its
powers, and the group {E[t 3} and its powers. It is possible to define the group -
as a direct product of these three groups because the primitive translations all com-
mute hence these three groups commute with each other. We know therefore that the

irreducible representations of the group % will be the direct product of the repre-
sentations of the groups generated by {fIt1}, {e t Z and {I t 3}. All we need do is

study the representations of one of these groups.
The representations of the group of f 11 and its powers is easy to find.

This is an Abelian group and hence has nothing but one-dimensional representations. *

*This is most easily seen from the fact that in an Abelian group every element is in
a class by itself and thus there are as many irreducible representations as
elements. In order for the sum of the squares of the dimensions of the ir-
reducible representations to be equal to the order of the group, every repre-
sentation must be one dimensional.
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Since {cl} N {E 10} and since {E 101 must be rperesented by I we have that {E-I}

must be represented by
Zij i~z Pl

i( -)t
e

We have in this way N irreducible representations, one for each value of the integer

P1 from 0 to N - 1. Multiplying the irreducible representations of the three one-

dimensional translation groups we find that {EIRn} will be represented by

e (5-86)

where Rn = nITI + n + n3t3 and k = k 1  + k2 92 + k3 3 In (5-86), we have de-

fined the three vectors b1 , bz, and b 3 by the relations

t. b. = r 6.. i,j = ,Z 3 (5-87)

k I, k , and k3 are given by

pi
k. pi 0, 1 ... N - 1 (5-88)

i 1,2, 3

In this way, we see that the vector k defines the irreducible representation of the

group of pure translations. There is one irreducible representation for each value

of kI , k2 , and k ; a total of N 3 in all. As we let the number N become very large,

we see that the allowed Z vectors, in the three-dimensional space spanned by b'1, b-2 ,

and b3 will become very dense. In the limit as N goes to infinity there is an irre-

ducible representation corresponding to every k vector for which 0< k 1 < 1; 0 < k2 <

7 1; 0 < k3 < 1. These relations define a parallelopiped and we see that there is one

irreducible representation of the group of pure translations for each point within the

parallelopiped as well as one for each point on the surface except for the excluded

surfaces k 1, k 2 = 1, or k3 = 1. We shall call the space defined by the vectors

bi, bz, and b 3 k-space.

It is clear that any point koutside of the fundamental parallelopiped, which

we have defined in the last paragraph, can be expressed in the form

=ik" + K (5-89)

q

where It ql ' + q 2' + q3b3. In (5-89), ql, q?, and q are integers, and it is

inside of the fundamental parallelopiped or on one of the surfaces k! = 0, k2 = 0, or

k = 0. It is clear that these points outside of the fundamental parallelopiped give
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rise to irreducible representations of the group of primitive translations, but the

representation corresponding to the point k in (5-89) is exactly the same as that cor-

responding to the point " in the same equation.

We shall call the vectors K the lattice vectors of k-space and it is clear thatq 
-

as the q's in (5-89) run over all integers we do indeed define a lattice in this k'-space.

We also see that all the irreducible representations of the group of pure translations

correspond to k vectors within or on a surface k 1 = 0, k2 = 0 or k 3 = 0, the funda-

mental parallelopiped, and that any point outside of the fundamental parallelopiped

gives rise to a representation identical with some point on the inside or on the surfaces

k. = 0 (i = 1, 2, 3).

We shall not go into the details here but it is also easy to show that other

fundamental volumes beside our fundamental parallelopiped could be defined which

have the property that points on the surface and all points in the interior correspond

to all the irreducible representations of the group of pure translations. One of these

is of particular interest and we shall use it as the volume which defines our irredu-

cible representations of the group of pure translations in all of our later work. This

is called a Brillouin zone and is defined in the following way. Imagine that we erected

all of the planes which are the perpendicular bisectors of the primitive translations

of k-space. These planes, bisecting lines which extend from the origin outward, will

enclose a volume about the origin. It is not difficult to show that the volume enclosed

in this way along with non equivalent points on the surfaces (points corresponding to

different irreducible representations, i. e., not differing by a lattice vector of k'-space)

will house all the irreducible representations of the group of pure translations.

Let us illustrate these remarks on the irreducible representations of groups

of translations by an example taken from the two-dimensional translation groups

which we defined earlier in this chapter in Section 3. Consider the group r 5 defined

in that section. This was a group whose two basic primitive translations were of

equal length and inclined with respect to each other at an angle of 600. If we call t

the length of these two translations then they are given by

tz = (5-90)

The two basic lattice vectors of k-space are given by Eq. (5-87)

t -1/2/ 0

The fundamental parallelopiped is illustrated in Fig. 5-25. The dots represent the
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lattice points in k-space, and the hexagon at the center

is the Brillouin zone constructed by erecting the per-

pendicular bisectors of the vectors from the origin to
2the lattice points. For the Brillouin zone, every point

i ,in the interior represents a different representation of

• the group r 5. All the points on the hexagon from 1

* * through 2 (but not including) 2' represent further dis-

tinct representations of this group of pure translations.

The remaining points on the surface of this Brillouin

Fig. 5-25 zone correspond to representations which are the same

as those we have already included. Thus, the point 21

corresponds to the same representation of the group of translations as the point 2

since the k vectors of these two points differ by the lattice vector of the reciprocal

space + b All the points on the edge of the hexagon opposite the edge 1 - 2 differ

from the corresponding points on the edge 1 - 2 by the vector b1 + b 2 and therefore

yield no new representations of the group F 5 .

In this way, we see how we may, in general, visualize the irreducible rep-

resentations of a group of pure translations by the construction of a k-space and the

first Brillouin zone. The work to follow on the irreducible representation of space

groups will make use of the insight we have gained into the irreducible representa-

tions of groups of pure translations and we shall have further discussion of Brillouin

zones in that work.

B. The Nature of the Irreducible Representations of Space Groups

We are now in a position to study the irreducible representations of space

groups. We shall assume that we are given an irreducible representation of a space

group and then study its properties.

We denote the space group by and a typical element of this group by fi I aj.
This group has a group of pure translations as an invariant subgroup. We shall call

this subgroups7 and an element of the subgroup is fEIR n}I . Let us assume that we

have an irreducible representation of the group q which has dimension n. The ma-

trices in this irreducible representation will be denoted by D (f I a}1). We can with-

out loss of generality assume that D ({aI }) forms a unitary representation of the

group . Let us now put this representation in a special form and study its proper-

ties.
The matrices representing the pure translations, namely D (+Iln}) cer-

tainly form a representation of the group of pure translations. We can assume that
the representation D (faI a) has been put in such a form as to completely reduce
the matrices representing the pure translations. Since we have seen that the group
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of pure translations has nothing but one-dimensional representations, this means that

all the matrices representing pure translations will be diagonal matrices. Let us

assume that our representation (fa I}) has this property. We know that the rep-

resentations of the subgroup of pure translations which appear along the diagonal can

be specified by their Z-vector. We can again, without loss of generality assume that

all diagonal elements of the matrices representing pure translations which translate

according to kI are grouped together as are those elements which translate according

to k' it3 , ... it. Here we have assumed that q distinct representations of the group

of pure translations appear along the diagonal of the matrices D( {In}), Thus,

the matrices representing pure translations are of the following form

ik R
1 ne~ik" R

1 ne

D( I (5-9Z)
LnJ' e

ik. R
e n

e q n

We know that if "n is a primitive translation so is (a-l)Rn, since

a {a }- 1 {ERn a fIaI = feIa-I'nj (5-93)

The matrix representing a- will be

icLit

x ik • i

e n

a-E&~~)= l R (5-94)

where we have made use of the fact that i. (a-1 n = k." . From the very na-

ture of unitary representations of a group, we know that

lAn)- D({cil)' D({in}) D({alaJ) (5-95)
-4
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It is easily seen that if one diagonal matrix is sent into another diagonal matrix by a

unitary transformation then the diagonal matrix elements of the second matrix must

be the same as those of the original matrix except possibly for the order. From this,

we see that the matrices (5-9Z) and (5-95) must have the same diagonal elements ex-

cept possibly for order since they are sent into one another by the unitary transfor-

matjon 5-95). Therefore, if e occurs along the diagonal of (5-9g) so must

e i a kl ' n for all a in the point group and for all R. Not only mut e i a kl ' ii n appearii iak~l ' Rn
along the diagonal of (5-9Z) bt it mustalso.appear as often as e n. It might

be that in addition to eikl " n_pd_peiakl " R n for all a there occurs some other di-

agonal elements of the form eik' Rn not included in this set. If this is the case, we

could break the diagonal matrix (5-92) up into two parts in the manner we have illus-

trated in (5-96). In this illustration, the two non vanishing blocks are diagonal

for all a
(5-96)

0other diagonal

0elements ofthe

form ek'R

matrices. We know that for some value of Rn any diagonal element in the upper block
will differ from any given value of Rn in the lower block. If we block off all the ma-

trices in the irreducible representation in a similar manner, we can show from the

relation (5-97) or (5-96)

D({aI}) D({IL'Rn}) = D({EIRl) D({aIa ) (5-97)

that the representation D ({a-1J) will be of the form (5-98)

D (faIal) = '0 ({f.Ia}1) (5-98)

This means, of course, that we have reduced the representation contrary to our as-

sumption that we were dealing with an irreducible representation.

1hiseaves us in the position that every diagonal element of (5-92) is of the

form e i a kl r'n where a is a member of the point group. From the discussion of the

last paragraph, we can now rewrite the diagonal matrix (5-92) in a different form il-

lustrating the fact that all the diagonal elements of the matrix arise from k-vectors

of the form ak 1 . We have illustrated this in (5-99). In this illustration
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ei~l R'ni

e aZkRln

'({I{0n}) = (5-99)

eicaqkl" Rn i /

the n X n matrix D f E Rn})is divided up into diagonal blocks with zeros elsewhere.

The diagonal blocks are matrices of order d = n/q and each one is itself a diagonal

matrix. 1. is the unit matrix of dimension n/q. a, = C, Q21 . .. q are the selected
elements of the point group which send k into i i, .k k respectively. ThusIin} k (i = 1 ... q) (5-100)

4 Here the ki correspond to different representations of ,7 Let us now block off all

the matrices D (f 1) in a similar way. Thus, we have

D ( Ia .............. D q({ a})

Here Dij({alaj) (i,j = 1 ... q) is a d x d (d = n/q) matrix. We can now learn some-

thing of the matces 0. (aia}). One thing which we already know is the form of

the matrices D({ElRn}). In the notation of (5-101), these matrices would be given

by

Dij({EIa n}) = eiaikl " n 16ij (5-102)

Let us now go on to a study of the matrices representing other than pure translations.

First, let us consider any element {11 b} of which has the property that

e ipl"n ein - tin for all in In terms of this means that
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Pkk1  + K (5- 103)

where iq is a lattice vector of c'-space. We note those elements of which have
s roperty form a group. Thus, if for ''} e1nkl e "

-P'k . - ei~kl. 1 ' -leikl Rn k,

e Rn
S il " ' n (5-104)

e ip'k1 ' Rn

= ii~9 " Rn

and therefore j1'Ib' } jPbJ is a member of the group. We shall call this group

the group of k I and shall denote it by . It is clear for one thing that this group con-

tains the entire group . For an element j I of _k we have

D({IRn}) D({PL:}) = D 1) D+)({ P'n})for allRn (5-105)

For the first column of blocks in the product on both sides of (5-105), we have, using

(5-102), that
ei *l n D.I(J1 3 1 }) = Dj((13j6).)e '  -1-n

(5-106)

=Dj 1 {Pb} e'k

From this we see that D ({ 15"} ) is zero unless j = 1. (It can also be seen from

the unitary nature of the representation that Dl({Plb}) = 0; j € 1.) Therefore

for all {fip j belonging to X, the group of k 1, that

D,1 + 5,IJ) 0

(5-107)

From this, we see that the matrices D({P I-}), for all {b:} belonging to the

group k1, form a representation of . .
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Now let us consider the matrix representing {aj 1 j} where {aj[ a} is a

specific operator of the space group for whichak = kj. From the fact that

4 D(Ei~1) D({a1I ) = D({ajI }) D({E-a~'ff }) (5-108)

th
we conclude, by comparing the i, 1 blocks on both sides, that

eiail " n Dil({aja'}) Di1({aj[a)eiaj 1"l Rnfor all n  (5-109)

This means that the only non vanishing block in the first column of D(4ai.1 ) is the.thth

j block. This j, 1t h block must then, of course, be a unitary matrix because of the

unitary nature of the matrices in the representation of the space group. If we allow

A all the matrices in 0{a })to undergo the unitary transformation

"l2 ,1a (

(5-110)

-~ D1(ij I

then all the matrices representing D ({aj [}) can be taken in such a form that

Dji( .j 1) = a.. This means that the only non vanishing block in the first column

of D( afj[) is the j which is the d X d unit matrix. We now have specified the

first row and column of the matrices representing {PI where {aI isamember

of X and the first column of the matrices representing aj Iaj where ajk 1  k.

This, it will turn out, is enough to specify the form of the entire representation

First, we note that -t and the elements {a) f } decompose i into its left

cosets with respect to . Thus

+ a~ +{iR}+. {aq I q}(5il

This is most easily seen from the fact that for any element {a :} we can find an ele-

ment of the set {aj a} (j= 1 ... q) such that

eia V =l eiai n '- IZ)
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where we have denoted the element in question by (alI a,} . This means that

o' 1k K q:

a- Sk = k' + a-1  (for a suitable K)
q. q

or
ia akR i

ae nR e (for all A (5-113)

Thus a'a must be the rotational part of some operator in .. Therefore, we have

that for any element {a I of

{{ a )(5-114)

for some J aj} and an element "(f3b'} of . T This means of course that faIJ

is in the thcoset. We may also note in passing that for all elements in the j coset

the rotational parts send k 1 into k. plus a lattice vector of the reciprocal lattice. We

shall now show that we can specify all the elements in D( fa) where a is any

element of in terms of Dl({Ib}) where fb belongs to the group . Con-
sider the th column of D({ala}). We know that for some am

sidr heI olmnof ala iak

eiak' R n eia " i n (for all An) (5-115)

By multiplying (5-95) from the left with D(f a 1 ) and comparing the Ith column of
both sides of the resulting equation, we have )for the j, Ict h block

I ( f ),({o 1}) e I = e R n D a1(I J) (5-116)

This means that, using (5-115), we have D.,(.-ila}) = 0 unless j = m. Thus the

only non vanishing block in the 1th column of D( aa }) is the mth where m is fixed

by (5-115). We shall now be able to find an explicit expression for Dfm({aIa) "

We know that (ola} {aI = aml { bI for some element of
,since

e = e

th
the left-hand side of the last equation, is a member of the m coset. For the matrices

we have
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D aj)= D({ci!jm} D({I5iJ) D({ci 1~)' (5-117)

For the m,1th block of D({aa-1) we have

DM1I a-1) =xDmi({o~mIam1) Dij({PI5'})[Dj({cai,})]
ji,j

! : D11({,i "} )
.1 .11 Dij({~3b})16Ij (5-118)

Z Here we have made use of the nature of the first column of the matrices representing

{mi alm and (ci.[ . In this way, we have expressed all the blocks in D(f al )
in terms of D ( J)

We can now show one more important fact. We mentioned that D b({Ib})

forms a representation of the group.X. It actually must form an irreducible repre-

sentation of this group. If we assume the contrary, then Dl ({f P }j) can be put in

the form
d1  d2

d d1 +d z =d (5-119)

SIf this is the case, every block of D(f I J) for 'all the elements of can be put in
the same form. A moment's consideration will show that by rearranging rows and

columns in D ((cI aJ) this representation of F can be reduced into two representa-
tions one of dimension qd 1 and the other of dimension qd2 contrary to the assumption

that D (fa I aJ) was irreducible.
This completes the discussion of the properties of the irreducible representa-

tion of the space group, but in the next paragraph we shall recapitulate the salient

features without the details of the mathematical proofs.

We have been able to show that every irreducible representation 0 ({ai })
of a space gr,,ap can be put in the form where the invariant subgroup of pure trans-

lations -7 is represented by matrices which are diagonal. If the representation is of

dimension n, then the elements of the diagonal matrices can be arranged in such a

way that th first d (where d is a divisor of n; n/d = ) diagonal elements are of the

form ek in in the matrix f({EI. })forall {IQ fr11 n " The remainder of the diagonal
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elements can be arranged in (n/d) - 1 groups of d diagonal elements such that within

any group the elements are of the form

ia. "
e n (j ... , q n/d)

Here a. is a selected member of the point group which we associate with the space
group element a a-ji . This blocking off of the translation matrices in turn leads

to a blocking off of the matrices D( {a in the irreducible representation of

These matricescanbeblockedoffinto d X d blockswhichwelabel Dij
(i,j = 1 ... q). Those elements which have the property that

ik "R X R
e n= e (for allRn)

form a group le (which includes the entire group of pure translations). The matrices

D1 1 
( f  qb- ) form an irreducible representation of X . The elements Tai a. and the

subgroup can be used to divide the group into its left cosets with respect to 2.
For any element {aIa-J of the group and for any a we can find an am such that

iaa k - iak RI n m ne =e

We can then specifythe matrix representing he element fa . by saying that the only

non vanishing block in the column of blocks is the m and the matrix which appears

in this position is DI({ Ib}) where {Pl } belongs to e and where

= ((5-lZO)

In particular for a I. j the only non vanishing block in the first column of blocks is
th Lthe j which we have chosen for convenience to be the unit matrix. An equivalent way

of specifying which block in the th column is non vanishing is as follows. We notice

that for an element (aI } of the group q we can multiply all the cosets from the left

by this element and this merely effects a permutation of the cosets. The 1th coset goes

into the one for which we can find an a and a fi} such that foIla) fa,lI =
f aMIZ f{ lb; namely the m. Thus the non vanishing blocks in the matrix repre-

senting an element al a show the way the cosets go into one another under the ele-

ments (aI a}. Let us call the form of the representation we have specified in the last

paragraph the standard form.

We can also prove the converse of the theorem contained in the last paragraph.

This would state that any representation of $ which is in the standard form would be

an irreducible representation of the group . This proof is quite straightforward

and makes use of Theorem 6. The representation is most easily constructed in terms
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of basis functions for the representation and the description of the basis functions for

an irreducible representation of a space group in standard form is as follows: Imagine

that we had d orthgonal functions u .. u which under translation through in are
multiplied by eik Rn. If these functionsform an irreducible representation of Z (the

P4 ik R ik*' Rngroup of elements 131b for which e' n e n (for all Rn)) then the n qd

functions

u; {u ~ i =I... q (5-121)

f.0 j~o j1 ... d

form an irreducible representation of . Here {ai ai} are the elements of i for

which = + {aIa2}.- + ... + a qIJ,* It is easy to show that the n func-

tions we have specified in (5-121) form a basis for the standard form of the irreducible

representation of space groups.

From the results of the last paragraph we can now see how to construct all

of the irreducible representations of a given space group. We first select a k-v ector

in or on theboundagy .f the Brillouin zone. For certain operators fP b of the group

of ipk ' Rn . e ik " Rn. This means that P = V + It. where 1Z is some lattice vector

of i-space. We construct all irreducible representations of this group of elements

which have the property that thg dagonal elements of the matrices representing pure

translations are of the form eik Rn. This by our previous discussions will lead to all

irreducible representations of which are associated with the vector k' As we let the

k-vector wander over the entire first Brillouin zone we get all irreducible representa-

tions of the group . Actually in order to get the distinct representations of the space

group we need only let k range over that set of points in the Brillouin zone such that
no two points k and 9' of the set have the property that ak + K. where a is any

member of the point group and K. is any lattice vector of k-space.

C. Additional Simplifications

We see from the discussion of the last paragraphs that the finding of the ir-

reducible representations of a space group which are associated with a k-vector,

k, reduces to the finding of those irreducible representations of the group of the k-

vector (the group-. ) which have the property that the matrices representingth

group of pure translations -7 (which is a subgroup of X) are of the form eik nn

where {cIlJ is any translation in %7 . We recall that - was defined as thatroup

of operators {PIb whose rotational parts P satisfy the condition e n = e

(or equivalent to Ak = k + Kj where tj is a lattice vector of k-space; V must be, of

course, one of the possible space groups). It is possible to make simplifications in
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finding the appropriate irreducible representations of .(. We shall pursue this here.

First, for convenience we shall introduce some further notation.

In a space group whose elements are faIa'} we know that the rotational

parts, a, form a group which is called the point group. Let us denote this group by

It is clear that the rotational parts of the operators in must also

form a group which is a subgroup of 1 o" We shall call this group o(k) indicating

that it is the point group associated with - (the group of the k-vector).

We recall that as we allowed k to wander over the interior and surface of the

Brillouin zone we could obtain all the irreducible representations of " by finding the

appropriate irreducible representations of the group of the k-vector (-t) for the k-

vector in question. Let us first consider points on the interior of the Brillouin zone.

It is a property of the interior points of a Brillouin zone that the only value of K. for

which Pk = k + K. is K. =0. In other words, kand Pk" cannot differ by any otherJ :i
lattice vector of the k-space than the zero vector. Thus, for any point in the interior

of the Brillouin zone Pk = k is the condition for the operators in X o(k) is, Of

course, one of the 32 permissable point groups. The irreducible representations of

the 32 point groups are well known. Let us denote by r(p) one irreducible repre-

sentation of the group F0(k). Let us then notice that if we let D 1I({PIT}), where

{PIb} belongs to -k, be given by

D11({pI 9) = ek br(P) (5-1z2)

then we obtain an irreducible representation of .k . First, we must show that

D( I T ) forms a representation of.X. If {p I and {p' IIb are two operators

i -their product is PP Pb' + b. Multiplying the matrices representing these

operators we obtain

Dll({fPb}) Dll({p-b"})= e " bei r '"(P) ( )
(5-123)

Cit b + b1) rw

The matrix representing the product is given by

D,1 (PP'IPb + gol) = eik - (P' + ) r(pw)

= e iip-1 kb' elk " b (ow) (5-124)

ei " ( ' + r
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in the last line we have made use of the fact that if P is in the group of the k -vector so

is its inverse. Therefore, (5-122) forms a representation of the group of the k-vector.

Since the only matrix which commutes with all the matrices r(p) is a constant times

the unit matrix (r (P) is irreducible), the only matrix which commutes with all the ma-

trices Dl 1({5I,}) is a constant times the unit matrix and therefore Dll({131})

forms an irreducible representation of the group . Thus by knowing all the repre-

sentations of the 32 point groups we can find all irreducible representations of the

space groups associated with k-vectors in the interior of the Brillouin zone.

Let us now consider a point on the surface of the Brillouin zone. For these

points it may be that Pk = k + K. where K. in some non zero lattice vector of k-space.JJ
In this case, the results of the last paragraph do not hold in general. They do hold,

however, for a special type of space group. We may recall that some space groups

had the property that every operator in them contained, in its translational part, noth-

ing but pure translations. This is another way of saying that every rotational operator

in the group has associated with it the zero translation. This would mean that all the

a's and 9"s of the previouspagagraphs were primitive translations. Let us again de-

fine D 1 [(fb) to be eikI I1(3) where {P]b} is now an operator for which Pk=
k + K. (for some K.). In this case, we again have an irreducible representation of

:1 J
. . Equation (5-123) remains the same, but the proof in (5-124) proceeds differently.

In this case we have

= b e b r(')
(5-125)

= ei ( + ) r" eow )

-1 --

In this way, we have made use of the fact that since P is in the group of the k- vector,

-1, =_ + K i and also, the fact that b is a primitive translation and therefore

eib • Ki = 1. Thus, for this class of space groups we can find all irreducible repre-

sentations of " for points on the surface of the Brillouin zone through the use of

For points in it-space on the boundary of the Brillouin zone whose group

contains operators with non primitive translations the situation is somewhat more

complex. There are simplifications which can be made in this case as well. For

most of the simple space groups of this type it is possible to find the irreducible repre-

sentations associated with points on the surface of the Brillouin zone by making use of
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special properties of these groups and we shall not go into the details here. Instead

we illustrate our remarks by finding the irreducible representations of some simple

space groups.

D. Examples of Irreducible Representations of Space Groups

Let us start by finding the irreducible representations of the two space groups

in one dimension. The translation group is the same for both of these space groups

and in one dimension Rn = nt 1 . From Eq. (5-87) we can define the basic lattice vector

of it-space. In this case b1 = (zir/1t I) " where is a unit vector in the direction of
t 1 In Fig. 5-26 we have illustrated by heavy dots the lattice points of it-space. They

are a series of equally spaced points which are a

0 . * , _-- distance (z/ I ) apart. By bisecting the two lat-
-3 -z -1 -1/a 0 +1/2 1 2 3 k1 tice vectors from the origin to the nearest neighbor

Fig. 5-26 lattice points in k-space we obtain the Brillouin
zone. The boundaries of this zone are illustrated

by the two vertical lines on either side of the origin.

The irred_4cible representations of the group of pure translations are given

by e i it " An = e i z wnk l where k = k' b. Thus all irreducible representations of theI V

group of pure translations are obtained by it-values within the Brillouin zone

_ < < I
Itll ItIl 2

We note in passing that the two end points of the Brillouin zone correspond to the

same irreducible representation of the group of pure translations since they differ by

a lattice vector of i-space (b).

One of the one-dimensional space groups consists of nothing but the pure

translation group. For this space group we have already obtained the irreducible

representations. They are all one-dimensional and are given by D(fcI n }) = eiZlnl

as k' takes on all values in the Brillouin zone.

The other one-dimensional space group has elements fciRn} and fi'I n}

for all n . Let us first consider the irreducible representation corresponding to

it = 0. It is clear that i' = - i = it = 0. For this point the group of the it-vector, 1 ,

consists of the entire space group . io (it) is merely the group E, i. Since this is

an interior point of the Brillouin zone we can.,us the method of Eq. (5-122) to find the

irreducible representations. In this case e n - 1, and the irreducible representa-

tions of q0 (Z) are the symmetric and antisymmetric representation. For this point,

the matrices representing the elements of the space group are given by

k= 0: D({lI~n}) Dl,((,it n})= +1; D({iI }) D D(f i(In}) t 1 (for all iln)

(5-126)
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We thus have two irreducible representations of the space group for this point cor-

responding to the two choices of signs in (5-126).

Consider now any other interior point in the Brillouin zone. From the re-

mark at the end of part B of this section all we need consider are the points in the

right-hand side of the Brillouin zone. For these points the group of the k-vectpr

consi ts only of the group of pure translations, L7 , since for these points e -ik n

eik " n. Using the notations of Eq. (5-122) we have D0,((1I],) = eiZkln. Re-

solvingF into its left cosets with respect to X we obtain = + {iIO, . The

pure translations are represented by the diagonal matrices

li2wk l n  0n

D( +I _n}) 0 (i'nk(5-127)
Ie

For the matrix representing the element i 1O} we must see how the cosets go into

one another under the operator ii 10 . It is clear that the first coset goes into the

second and the second goes into the first. From this we learn that the only non vanish-

ing block in the first column is the second and that the only non vanishing block in the

second column is the first. We must now find which of the matrices Dll({Pl1})

for (11} iny, go into these non vanishing blocks. (In this case )V- is 7 and D
has dimension 1. ) We know that the non vanishing block in the first column is the unit

matrix since (ii0} is the element which takes the group 7 into the left coset ii 0}J.
In the second column, in order to find which matrix D 1 +({ 19}) for 9PI}in &V
goes into the first position we must solve the relation (5-120) which in this case be-

comes

(il11fi 10 = (EI0(P} (5-128)

Clearly (3I } = ( 101 and therefore for the matrix representing io 101 we have

D+101O) = ( 0 (5-129)

By multiplication of (5-127) and (5-129) we obtain the matrices representing {iI%}.

( 0 eiZirkln

D (f i ) "i-wkln75-
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The only remaining k-value which we must discuss in order to complete our
irreducible represen ations of this space group is the point k 1enumeration the ponik~ poinnk "

+ 1/2. For this point e = ek •n, the group of the k-vector is the entire

group . Once again oZ) is the group consisting of Land i. This is the case of

a point on the boundary of a Brillouin zone for a space group without non primitive

translations. Thus, we can again use Eq. (5-122) to determine the irreducible repre-

sentations. We therefore obtain in this case for the matrices representing the ele-

ments of the group

D ({ LIn}) = DII(fclRn})= eiw(l) D({iIn}) = 11 ({ii~}) = ein(+)
I, (5-131)

The two signs in (5-130) specify the two possible representations of the space group

at this point corresponding to the symmetric and antisymmetric representations of the

group j°OW)" Thus, for the one-dimensional space group . + f"i 10 we see that

for k = 0 we have two one-dimensional representations. For 0 and not on the

boundary of the Brillouin zone we have two-dimensional representations and for the

boundary point we have again two one-dimensional representations.

As our final example we shall find the irreducible representations of the

space group generated by {C3 10}, {1l 101 {I n} where An is a translation ofr5 and

2ttl = t : 1/2
This group is illustrated in Fig. 5-21. We have already illustrated the Brillouin

zone in Fig. 5-25 but we repeat it in Fig. 5-27 in order to illustrate some special

z points in the Brillouin zone. We recall that the point

group of this space group consists of the operators E;
A Y2 o 0

A Y the identity; C 3 and C 3 : rotation through 120 and 240

r x clockwise; (1 reflection through the x axis; a- reflec-

tion through an axis inclined at 600 with respect to the

positive x axis; and 0-3 a reflection through an axis in-

clined at - 600 with respect to the positive x axis. By
Fig. 5-27 the discussion at the end of part B of this section all we

need consider to obtain all irreducible representations of the space groups are the

points of k-space which are in or on the triangle r z x. We notice that the space

group under consideration is one of the type without non primitive translations. We

can, therefore, use the method of Eq. (5-122) to find all the irreducible representa-

tions of the group of the i-vector for boundary as well as interior points. We shall

now discuss all possible points in the region r ZX and describe their irreducible

representations.
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r: For this point the group of the it-vector is the entire group since

e n = 1 for all and all 3 since k = 0. Thus, the matrices representing the
n

elements of the group are

D(LPIR Dll({Pl~n}) ri(P) (5-132)

where Fi(p) is an irreducible representation of the group C3v which in this case is

the group o(k). In (5-133), we have listed the characters of the irreducible repre-

sentations of the group C3v and these correspond directly to the characters of the op-

erators in the space group through the use of (5-132)

E C, C32 *2
r" I

1 (5-133)

r 1 1 -1

r3 2 -2 0

A: A is a general point inside of the Brillouin zone. The group of k-vector

consist of the group of pure translations L7 . Thisgr.oup, of course, has nothing but

the one-dimensional irreducible representation eik Rn. Dividing into its cosets

we obtain

c= J7+{31} + {CI01 '7 + -l 10}-7+ f-? 101' + f- 3101}J (5-134)

For simplicity let us denote E by al; C 3 by aZ, etc. If we do this, then it is quite

easy to find the matrix representing an operator {ail 0). Consider the jth column

of the matrix representing i10 . The only non vanishing element in this column

will be the kth element for whicli ak - aia j, The matrix representing an element

{p I in of the group of the wave vector which will appear here is just given by the

solution of the equation

{aiIO} {GjRO} = {QkIO} {I3Rn} (5-135)

Clearly P = E and An = 0. Therefore in the jth column of the matrix representing
n th

{°i 1° the only non vanishing element will be the k for which aiojo ak" In this

position will occur a 1. Thus, the matrix representing the element {a*i 01 will just

be a matrix with a single 1 in any row or column. (This is, of course nothing more

than the regular representation of the group C 3 v.) The matrix representing {l 101

4
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0 0 0 1 0 0

0 0 0 0 1 0

S0 0 0 0 1
D({a- 10) = 1 0 0 0 0 0 (5-136)

0 1 0 0 0 0

(0 0 1 0 0 0)

The matrix representing f., I} would be

ia k" Rn

eicz k " An 0

ed3k

D(fdk}) (5-137)

0 ei "5k Rn

eia6
" Rn

all the remaining matrices in the representation can be obtained by multiplication of

(5-137) by one of the matrices representing fa, 0)f

A: The only operators in X are (E ln} and {Tl {n} for all n Thus

the group j O(Z) is the group consisting of E, al which has an antisymmetric and a

symmetric representation which we may label A1 and AZ. The matrices Dll( ( J

for (PIij} in* have been given by (5-1i). Here r( 3 must be either A1 or A.,
i.e., r (E) = 1, r (0r) = ± 1. The characters of the operators in o o(t) are given

in (5-138)

1  1 1 (5-138)

Decomposing into its cosets we obtain

~=X+c 3 Io.~+ (c~i}. ~(5-139)

Let us illustrate a matrix in this irreducible representation by finding the matrix

representing taf I 01. Using the notation introduced earlier C3 = c.; C3 = 3 the
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only non vanishing block in the first column will be the first since { 01 is in the

group of the wave vector. The matrix element which will appear here will be ± 1 de-

pending on whether we choose A or A In the second column, we have f0J 1 C 0 0 } 3
121 1 2' 

-C 3 1 f- 101 and therefore the non vanishing element in this column is the third and

the matrix appearing here is D,,( o- 0 ) which is again ± 1. For the third column

whe haveC3 1 31 1 0l . Thus here the non vanishing element is

the second for which we have again! 1. Thus the matrix representing {1 is

( 1 0 0

D(f-iI1) K0  0 t1 (5-140)

The signs depend on whether we choose A1 or A as the representation of o(k).

A: The argument is identical with the point A if we replace a-1 by a-2.

Y: For this point 03 sends k into a point on the opposite side of the hexagon.

These two points differ by a lattice vector of k-space namely 4. b In this case1 2
the group o(k) is E, (r3 and the argument runs along the same lines as that for A and
A.

X: For this V' value all the operators of the point group either send X into X

or one of the other points marked by an X. Since all these points differ by lattice

vectors of it-space, the group X is the same as and o(it) is o or C 3 v. We

can find the irreducible representations by (5-122)

O({PIRn1) = Dll({PI'n) = e'( Rn (5-141)

Here i( ) is the i th irreducible representation of C 3 v and K is the k-value of the

point X. The irreducible representations of C 3 v are already listed in (5-133).

Z: The argument for this point is the same as that for the point X.

To sum up the situation is as follows. For a general point, A, in the Bril-

louin zone we have a six-dimensional representation of the space group. For the

points , X, and Z we have two one-dimensional representations of the space group

and one two-dimensional representation. For the points Y, A, A, we have two three-

dimensional representations of the space group corresponding to each of the points.
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