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1 Overview

This pdf file contains hyperlinks that launch FullProf Studio with example
files for different types of magnetic structure. By combining a tutorial directly
with viewable structures, the reader is encouraged to explore the structure
types and gain an understanding of how different types of basis vectors and
values of the propagation vector correspond to the different types of magnetic
structure.

1.1 File structure

The initial files are stored in the SARAh directory and temporary copies are
made in the directory ‘Magnetic Structures’ on the desktop.

FullProf Studio must be installed and the extension ‘.fst’ must be asso-
ciated with it. (This may be done in Windows by right clicking on an fst
file and changing the ¡Open with¿ options in the ¡Properties¿ area.) You
should close FullProf Studio when you have finished viewing a file.
Opening up several Studio windows will slow down your computer!
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2 Editing the FST file

The complete manual for Studio can be found in the FullProf documents
directory. In this set of exercises only a few instructions and variables need
to be changed. All variables are space delimited:

• The limits for the number of unit cells displayed along the a- b- and
c-axes. In the example cells are drawn from 0 to 3 (a-axis), 0 to 3 (b-
axis), 0 to 1 (c- axis)
BOX 0.000 3.000 0.000 3.000 0.000 1.000

• The propagation vector of the magnetic structure
K 0.0000 0.1470 0.0000

• The magnetic basis vector.
The important parts for this exercise if is 3)-9): the real and imaginary
basis vector components. Note that these are defined with respect to
the space group axes, the natural axis system.
SKP 1 1 1.000 0.000 0.000 0.000 1.000 0.000 0.000

• if the command GROUP is present, the contribitions from the different
basis vectors for a site will be added together. If it is not present, they
will be displayed separately.

3 The propagation vector

Magnetic structures can be described by the periodic repetition of a magnetic
unit cell, just as crystal structures are described by translation of a nuclear
unit cell. For convenience, rather than building a complete magnetic unit
cell (which could contain thousands of magnetic atoms) we use a description
based on the nuclear unit cell and a ‘propagation vector’, k, that describes
the relation between moment orientations of equivalent magnetic atoms in
different nuclear unit cells. This provides a simple and a general formalism
for the description of a magnetic structure.

We illustrate this for the moment distribution mj associated with the
atom j of a magnetic structure. This can be Fourier expanded, whatever the
nature of the ordering, according to:

mj =
∑
k

Ψk
j e

2πik·t (1)
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The summation can be made over several wave vectors that are confined to
the first Brillouin zone of the Bravais lattice of the nuclear cell. If only one
wave vector is involved, this simplifies to:

mj = Ψk
j e

2πik·t (2)

This equation describes the translation properties of the vector, Ψj, in
direct space, which at present we can think of as the projections of the
(complex) basis vector along the a, b, c crystallographic axes with relation
to the atomic site in the zeroth (nuclear) cell.

At another atomic site (of the same type) in the crystal that is related
by a lattice translation vector t, the projections of the moment on the 3
crystallographic axes are related to those in the nuclear cell by Equation 2.

The following structure has the moments along the c-axis and has the
propagation vector k = (0 0 0.5):

• Open k=0 0 0.5.fst

Exercises:

• Change the number along the c-axis, the direction of the modulation
by the k-vector

• Change the number of cells along the a- and b- axes

Note how the k vector causes the moments to change along a specific
direction. If the k vector is along c∗, then cells displaced along a- or b- are
unchanged. The effect of the k vector is not to rotate the moments. It only
phases them.

If we know the basis vector that describes the moment orientation in the
zeroth cell and the propagation vector, we can use Equation 2 to calculate the
basis vector and moment orientation, of any equivalent atom in the crystal
structure.

3.1 The propagation vector in centred cells

A word of warning must be given when determining and using the propaga-
tion vector in centred cells, i.e. non-primitive cells. While the limits of the
propagation vector are normally taken to be from 0 to 1 along the reciprocal
axes, this only applies to primitive cells. In centred cells these limits may
be exceeded.

It is recommended that indexing be carried out in the primitive cell to
prevent confusion, or that primitive k vectors be generated and converted to
the conventional centred cell where they can be used.
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3.1.1 k=(000)

As an example of this difficulty, consider a body-centred structure. The
diffraction pattern displays magnetic intensity on some of the nuclear peaks.
It is a frequent assumption that the propagation vector of the magnetic
structure is therefore k = (0 0 0). Below is a structure file for this value of the
propagation vector. Equation 2 indicates that for all values of the translation
vector t, the exponential is null. It follows that all atoms in the crystal
structure that are related to the first by primitive lattice translations
have the same orientation as it.

• Open k=000.fst

3.1.2 k=(001)

Now look as the corresponding structure with propagation vector k = (0 0 1):

• Open k=001.fst

Exercises:

• Consider the phase in the exponential of Equation 2 for this k vector
and the centring translation t = (0.5 0.5 0.5)

• When converted to the primitive setting the value of the k vector is
k = (0.5 0.5 0.5). The lattice translation is t = (1 0 0). What is the
exponential phase?

It does not matter whether a structure is defined in a primitive or non-
primitive setting. However, it is important to state the setting (centred or
non-centred) used to define the propagation vector. When dealing with centred
systems, consider the primitive k vector.

4 A linear combination of basis vectors

The general basis function, Ψj, in Equation 1 is made up from contributions
from several basis vectors defined by the weighting coefficients, Cn, where n
is the index of the basis vector:

Ψj =
∑
n

Cnψn (3)

or written in an alternative form:
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Ψj = C1ψ1 + C2ψ2... (4)

It is important to remember that Cn may be real, imaginary or complex.

Whether basis vectors, Cn and Ψj, and the coefficients Cn are real or
imaginary defines how the moments of the magnetic structure change as you
go from one cell to another. Using this description (in terms of Bloch waves)
apparently complicated structures, like helices or cycloids, can be simply de-
fined.

4.1 Example- an Umbrella structure

In the following example the magnetic structure is made by adding (weighted)
components from two basis vectors:

1. The first basis vector involves components that are in the ab plane:
Open umbrella 1.fst

2. The second basis vector involves only components that are perpendic-
ular to the ab plane(i.e. along the c-axis of this hexagonal system):
Open umbrella 2.fst

The following fst file shows how these basis vectors can be combines to create
an ‘umbrella’ structure.

• Open umbrella 3.fst

Exercise:

• Change the canting angle of the moments from the ab plane by changing
the contribution from the second basis vector

Understanding how basis vectors combine to make a magnetic structure
is very important. If you look at components separately and think how they
will combine, you will learn to read the basis vector space and understand the
possible structures and their degrees of freedom
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5 Different types of magnetic structure

The previous section showed how basis vectors combine to describe a mag-
netic structure within the nuclear unit cell (more specifically, within the
primitive unit cell which is the asymmetric unit). In this chapter we will
see how this structure can be extended to propagate through the crystal
structure using the propagation vector k. The role of the propagation vec-
tor and the importance of the different types of propagation vector will be
emphasised.

5.1 Simple structures

As we have seen, the translation properties of a magnetic structure may be
described by:

mj = Ψk
j e

2πik·t (5)

Expanding the exponential we have:

mj = Ψk
j [cos(2πk · t) + isin(2πk · t)] (6)

We will now consider various possibilities for the basis vector Ψj and the
propagation vector k and some of the different types of magnetic structure
that they can lead to.

5.1.1 Ψ is real and the k is such that the sine component is null

This is the simplest situation and occurs when Ψk
j is a not a complex basis

vector (this is the case when Ψk
j is real, or purely imaginary and so can be

made real by multiplication by i).
The condition that mj is real requires that the sine component is zero –

this can occurs only for certain values of k, i.e. if k = (0 0 0) or if the vector
has non-zero that are 1

2
, e.g. k = (0 0 1

2
). Equation 6 then reduces to

mj = Ψk
j cos(2πk · t) (7)

This is the situation in many simple ferromagnetic where the propagation
vector is necessarily k = (0 0 0), ferrimagnetic where again it must be k =
(0 0 0), and antiferromagnetic where the propagation vector is k = (0 0 0)
or k = (0 0 1

2
), k = (0 1

2
1
2
) etc structures.

Exercise:
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• Open k=000.fst and change the k vector to k = (0 0 0.5) Look at how
the moments in the second nuclear unit cell change from being in phase
(k = (0 0 0)) to being π out of phase (i.e. reversed) for k = (0 0 0.5).

5.1.2 Ψ is real and k is such that the sine component is non-zero

If the basis vector is real and the sine component is non-zero, Equation 6
leads to a magnetic moment that is complex – an unrealistic situation as the
magnetic moment (or the spin density that creates it) is a real entity.

We are therefore left with the problem of how to relate our complex
Fourier component to a real moment. Resolution of this problem in fact
turns out to be very simple: the moment here cannot be described by a
single propagation vector, but rather is described by contributions from 2
propagation vectors: the second propagation vector that is required in order
to describe the magnetic moment distribution is the propagation vector -k.
If k and -k are thought of as waves going in opposite directions, we see that
their combination creates a standing wave that will be entirely real.

Using this approach the atomic vector for an atom in the nth cell related
to that in the zeroth cell by translation t is then given by:

mj = Ψk
j e

2πik·t + Ψ−k
j e−2πik·t, (8)

where,

Ψ−k
j = Ψk∗

j (9)

Insertion of this relation into Equation 8 and expansion of the exponential
leads to

mj = 2Re(Ψk
j )cos(2πk · t) + 2Im(Ψk

j )sin(2πk · t) (10)

As we are considering real basis vectors, the imaginary component in Equa-
tion 10 is zero and this reduces to

mj = 2Re(Ψk
j )cos(2πk · t) (11)

The resulting structure therefore has a cosine modulation. For historical
reasons it is commonly referred to as a ‘sine structure’. There are 2 limiting
types of sine structure, these are detailed below.

Exercise:

• Open k=0 0 0.5.fst and look at how changing the k vector to k =
(0 0 0.25), k = (0 0 0.2145), and corresponds to changing the periodic-
ity with which the magnetic structure propagates through the crystal.
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Small values of a component of k correspond to long wavelength com-
ponent in direct space.

This example involved both commensurate and incommensurate k vec-
tors. Changing the k value away from the symmetric k = (0 0 0.5) lead to
a non-zero sine component in Equation 6. Adding the component of -k is
required and this leads to a modulation in the size of the moments as the
magnetic structure propagates through the crystal structure (this addition is
performed automatically by FpStudio, so you do not need to worry about it.
Just understand that it is happening in the background.). There is no intrin-
sic difference between k = (0 0 0.25) and k = (0 0 0.2145) as k = (0 0 0.25)
is not a symmetry point. While one is commensurate and the other not, they
both lead to spin density waves.

5.2 Transverse Sine Wave- a Spin Density Wave

In this case, the basis vector is perpendicular to the propagation vector:

• Open transverse SDW.fst

5.3 Longitudinal Sine Wave- a Spin Density Wave

In this case, the basis vector is parallel to the propagation vector:

• Open longitudinal SDW.fst

5.4 Non-collinear incommensurate structures

5.4.1 Ψ is complex, k is incommensurate, and the real and imag-
inary components are transverse and equal in magnitude

As the k vector is incommensurate contributions are required from the vector
k and from -k. Therefore, we begin again from Equation 10:

mj = 2Re(Ψk
j )cos(2πk · t) + 2Im(Ψk

j )sin(2πk · t) (12)

The resultant structure is made up of a component that is modulated
according to a cosine function and a component transverse to it that follows
a sine function, i.e. two transverse components with a phase difference of
π/2. This forma a helix.

If the sine and cosine components are of the same length they may be
projected onto a circle, the resulting structure is said to be a ‘circular helix’,
i.e. one in which the magnitude of the moment is constant, but its orientation
changes.
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5.4.2 Ψ is complex, k is incommensurate, and the real and imagi-
nary components are transverse and not equal in magnitude

As the real and imaginary components are of different size, the equation

mj = 2Re(Ψk
j )cos(2πk · t) + 2Im(Ψk

j )sin(2πk · t) (13)

describes an incommensurate structure that projects onto an ellipse rather
than a circle. The resulting structure is referred to as an ‘elliptical helix’

5.5 Helical structures: circular helices and elliptical
helices

The following files show how the non-collinear real and imaginary components
add together to form a helix:

• Open helix separated components.fst

• Open helix.fst

5.6 Cycloidal structures

In the previous examples of circular and elliptical helices, the basis vectors
(and moment components) lie in a plane that is perpendicular to the prop-
agation vector k. If the basis vectors have components that are parallel to
k, this component will change in magnitude and sign as the structure propa-
gates. The result is a magnetic structure where the moments appear to twist,
this is called a cycloid.

So, a cycloidal structure is one where the moments turn in the direction
of the propagation vector.

• cycloid.fst

The following file shows the separate components

• Open cycloid separated components.fst

These components may toggled to contribute together by changing the
line:
MATOM Fe FE .0000 .5000 .0000 SCALE 2.0
to
MATOM Fe FE .0000 .5000 .0000 SCALE 2.0 GROUP
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Cycloids have become very important in recent research because their sym-
metry is such that they can allow a coupling to occur between the moments
and the electric dipoles. This can cause the magnetic ordering and electronic
dipole ordering to be linked, leading to a new type of multiferroic behaviour.
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