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1 Introduction 

The determination of magnetic structures is a special area of condensed matter research. While 
being fundamental to the understanding of electronic structures and properties, it remains a 
subject that is treated with difficulty and is full of incorrect solutions. This article is based 
around two goals: 

• The explanation of the different possible types of magnetic structure. 

• The demonstration of how symmetry leads to their proper description, and can aid their 
solution. 

In content, the first part of this article is based on the practicalities of what an experimenter 
should know in order to understand and describe a magnetic structure. In the second part, 
symmetry arguments will be shown to reduce the otherwise arduous task of determining a 
magnetic structure, to the investigation of a handful of possible structures. 

2 Basic crystallography 

2.1 Nuclear crystal structures 

A nuclear crystal structure can be described in terms of lattice translations of a unit cell. If 
the unit cell contains only one atom it is said to be a primitive cell; if it contains several atoms 
it is said to be a non-primitive lattice. The atomic positions of an arbitrary atom in the Ith 
unit cell is given by 

(1) 
where 

(2) 
and 

(3) 

Here a, b, c are unit vectors of the nuclear cell defined according to the International Tables; 
n\, ri2, n3 are integers and x, y, z have values that are less than unity. 
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Figure 1: Some different types of magnetic structures 
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2.2 Reciprocal lattice 

In crystallography a useful and much used construction is the 'reciprocal lattice'- this can be 
defined as: 

(4) 

(5) 

(6) 

Where VQ is the volume of the unit cell, VQ = a • (b x c). A reciprocal lattice vector r connects 
the origin to a given node in reciprocal space 

(7) 

when h, k, and I are integer numbers. 

3 Propagation vector and its star 

3.1 Description of moments 

Before we detail what a magnetic structure is, we must begin with a description of the magnetic 
moment itself. There are of course a variety of ways and coordinate systems that can be used 
to describe a magnetic moment, e.g. Cartesian, polar or crystallographic coordinates. While 
it is of course preferable to describe the particular properties of the final structure in the most 
useful system (e.g. a rotation of a moment away from an axis is best described in terms of 
an angle), in the general case it is easiest to describe a moment in terms of projections along 
the crystallographic axes. Rather than say that a moment is of unit length and makes an 
angle of 0 ° with the c-axis, we will simply say that the projection of the moments along the 
crystallographic axes can be described by a 'basis vector' * which has components along these 
axes. In this case, the basis vector is # = (001). In fact, when the basis vector is real, it simply 
corresponds to the projection of the moment along the different crystallographic axes, and so : 

(8) 

Often, however, the projections of the moment are described not just by one basis vector, but 
by the summation of several (see Section 5) : 

(9) 

In this work we will use ifiv to represent the v components of #.,• for a given propagation 
vector k. The values of \Pj will be taken as being those of atom j in the zeroth unit cell (i.e. 
the crystallographic cell) . 
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3.2 Formalism of a propagation vector k 

Magnetic structures can be described by the periodic repetition of a magnetic unit cell, just as 
crystal structures are described by translation of a nuclear unit cell. For convenience, rather 
than building a complete magnetic unit cell (which could contain thousands of magnetic atoms) 
we use a description based on the nuclear unit cell and a 'propagation vector', k, that describes 

. the relation between moment orientations of equivalent magnetic atoms in different nuclear 
unit cells. This provides a simple and a general formalism for the description of a magnetic 
structure. 

We illustrate this for the moment distribution m,j associated with the atom j of a magnetic 
structure. This can be Fourier expanded, whatever the nature of the ordering, according to: 

(10) 

That the summation is made over several wave vectors that are confined to the first Brillouin 
zone of the Bravais lattice of the nuclear cell is explained in detail in Section 3.4. If only one 
wave vector is involved, this simplifies to: 

(11) 

This equation describes the translation properties in real space of the basis vector SPj, 
which at present we can think of as the projections of the magnetic moment along the a, h, e 
crystallographic axes with relation to the atomic site in the zeroth (nuclear) cell. At another 
atomic site (of the same type) in the crystal that is related by a lattice translation vector t, 
the projections of the moment on the 3 crystallographic axes are related to those in the nuclear 
cell by Equation 11. An example of this is shown in Figure 2. Here the magnetic unit cell is 2 
times larger along the c-axis than the nuclear unit cell and the propagation vector is k=00|. 
The moment in the zeroth. cell is described by the basis vector <Pj=(0 1 0), that is to say the 
moment is pointing along the 6-axis. When we move to the cell above {i.e. to a site that is 
related by the translation vector1 t=(0 0 1) the moment is rotated by 180 ° and now points 
along the (0 -1 0) direction. As we move up the structure we find that the moment turns by 
180 ° for each nuclear cell translation until at t=(0 0 2) it is the same as in the zeroth cell. In 
this way, if we know the basis vector that describes the moment orientation in the zeroth cell 
and the propagation vector, we can use Equation 11 to calculate the basis vector and moment 
orientation, of any equivalent atom in the crystal structure. 

3.3 Stability of magnetic structures 

When the sample is cooled and condenses into a state with magnetic order, the magnetic struc­
ture that results must leave the Hamiltonian invariant to lattice translations, i.e. the magnetic 
Hamiltonian of different unit cells must be the same. The minimisation in the magnetic energy 
of the system results in three possible situations: 

• one k vector is more favourable than the others and the system chooses a ground state 
configuration that is described by: 

(12) 
1 Remember that a lattice translation vector in real space is given the symbol t, while one in reciprocal space 

has the symbol T. 
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Figure 2: Description of translational properties with the propagation vector k. In this example 
the basis vector for the moment in the zeroth cell is SP =(0 1 0), k=00| and each plane 
corresponds to a lattice translation of t=001 

This is the most common situation and most of this work will be devoted to single k 
structures. 

• several k vectors of the star are involved. The ground state is then described by: 

(13) 

This is termed a 'multi-k' configuration. 

* One k vector and its harmonics are involved, e.g. | . The ground state is then described 
by: 

(14) 

If the transition involves several arms of the star of propagation vector k and their har­
monic terms, we have the possibility of crossed harmonics that are sometimes referred to 
as intermodulations. 

3.4 Star of the propagation vector -k 

We will now consider the effects of the space group, G0, of our crystal structure on the prop­
agation vector k. For ease we will separate each symmetry element g = {h, T } into rotation 
and translation parts, these are h and r respectively. The action of the rotation part h on the 
reciprocal vector k, results either in leaving k unchanged, or the generation of an unequivalent 
wave vector k' : 

(15) 
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Figure 3: The star of the propagation vector k=(x 0 0) in the tetragonal space group I4/mmm 
(point group D\7

h). The arms of the star are: kx=(:r 0 0), k2=(0 -x 0), k3=(-i 0 0) and k4=(0 
rcO) 

where, 

(16) 

In the general case, a number of distinct propagation vectors will result from the operations 
of the rotational elements of the space group Go on the propagation vector k. The symmetry 
elements of G0 may then be classed into cosets, where the first coset Gk is made up of elements 
that do not change the vector k, the second coset (given the symbol #2) transform it into the 
unequivalent vector k2, and so on. If <?£, represents the elements of the coset L, we can write 
this relation as 

(17) 

In this way, we find that the rotation elements of the space group G0 gives rise to a set 
of unequivalent wave vectors. These we describe as being the 'star' of the propagation vector 
k;[l] each wave vector is an 'arm' of the star (and example of a star is given in Figure 3). The 
number of arms, l^, that make up a star is of course equal to the number of cosets and cannot 
exceed the number of elements in Go-

If Crystal Electric Field (CEF) or higher-order exchange interactions (e.g. quadrupolar-
type) are appropriate, several arms of a star can be involved in the structure, it is then said 
to be a 'multi-k' structure (this notion will be expanded upon in Section 4). More often, the 
magnetic structure is the result of only the first k vector. For this reason, we will now focus on 
the rotation elements that leave k invariant. 

3.5 The little group of the propagation vector -k 
The symmetry elements of Go that leave the k vector invariant are of particular importance in 
the determination of a magnetic structure. For this reason the elements of the first coset are 
given a special name- they make up the 'little group' Gk, and it is on these that all the Group 
Theory arguments that follow in Sections 7 and 8 are based. The little group will be discussed 
in greater detail in Section 8. 

4 Multi-domain and multi-k structures 
While the majority of magnetic structures that we come across involve only a single propagation 
vector k, it is useful to see how the different types of propagation vectors can take part in a 
magnetic structure. Experimentally, these situations are revealed by the appearance of more 
than a single reflection around a reciprocal lattice point. 
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Figure 4: a) The magnetic motif of MnO made up of ferromagnetic planes of moments that 
are coupled antiferromagnetically. b) The star of k in reciprocal space is made up of the four 
propagation vectors related by the rotation elements of the space group GQ: ki = ( | , | , | J , k2 = 

(I> I ' l ) ' ^ 3 = ( I ' l ' l ) a n d k4 = (5,5,§)- Domains are found that correspond to each of these 
k-vectors. 

4.1 Multi-domain structures 

The first magnetic neutron diffraction pattern collected was that of MnO, published by Shull 
and Smart[2]. The period of the magnetic unit cell was found to be doubled along each of the 
cubic axes of the FCC structure , and so its volume is 8 times that of the crystallographic cell. 

We now know that the structure in fact involves domains that order according to the 4 
different arms of the propagation vector. The four k vectors involved are: 

(18) 

As there are domains that order according to vector k1; others to kj,..., IQ, this is termed a 
'multi-domain' structure. 

Experimentally, different k domains will lead to different magnetic reflections, just as in 
multi-k structures. In fact, the diffraction patterns of multiple domain and multi-k structures 
are identical and it is impossible to distinguish them without the application of an external 
constraint that breaks the symmetry on a macroscopic scale, and favours the population of one 
k domain over another. 

4.2 k and -k structures 

Structures that involve contributions from the two arms k and -k do not fall simply into 
the class of multi-k structures because, as we will show in Section 5, the requirement of a 
contribution from the -k arm can simply be the result of the form of the basis vectors, or 
the value of k. Typically, the contribution of these two components gives rise to modulated 
magnetic structures, e.g. sine and ellipse structures. 

4.3 Multi -k structures 

As we have already seen, multi-k structures can involve different arms of the star of the prop­
agation vector k. This is a situation favoured by higher terms in the exchange Hamiltonian 
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Figure 5: The magnetic structures of the heavy rare earth metals. 

of the magnetic system. Also possible are structures that involve an 'accidental' degeneracy 
between the stars of unrelated propagation vectors. A magnetic transition that involves several 
stars does not necessarily follow the Landau theory for a second-order transition (Sections 7.3 
and 7.2), but if suitable degeneracies occur the resulting structure may still order under a single 
Irreducible Representation, 

4.4 Structures that involve the harmonics of k 

Addition of components of the harmonics of k to a structure will lead to a squaring up of 
the modulation, that is to say the magnitudes of the moments on the atoms becomes equal. 
This situation can be driven by CEF effects that disfavour any reduction in the amplitude of 
magnetic moment, or an instability of the modulated structure because of the large entropy 
associated with it. This is exemplified by a sine structure, where decreasing temperature leads 
to the structure becoming unstable and may lead to a squaring up of the modulation of the 
moments. Examples of this are the metals Er and Tm (see Figure 5) where third, fifth and 
higher order harmonics progressively appear with decreasing temperature. [3] 

5 Translation properties of magnetic structures 
Now that we will return to the situations that involve only a single propagation vector k, and 
perhaps its inverse -k. We have already shown how basis vectors and propagation vectors can 
be used in the description of magnetic structures. In this Section we will examine the different 
types of magnetic structures demonstrated in Figure 1. In the general case, the k vector may 
refer to any point within or on the surface of the first Brillouin zone. This gives rise to two 
general classes of magnetic structures: 
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• Commensurate- the magnetic cell that is a simple multiple of the nuclear cell. It is in this 
group that are found the majority of known magnetic structures: simple ferromagnets, 
antiferromagnets and ferrimagnets. 

• Incommensurate- there is no simple relation between the structural and magnetic cells. 

It is important to note that these classifications describe only the propagation vector; the 
magnetic structure itself is the result of the propagation vector k and the basis vector $!j. It 
is the combination of both of these that gives rise to the different possible structuresfl, 4, 5, 6]. 

5.1 Simple structures and Sine structures 

As we have seen, the translation properties of a magnetic structure may be described by: 

(19) 

Let us now expand the exponential: 

(20) 

and consider various possibilities for the basis vector *f?j and the propagation vector k. 

5.1,1 $ is real and the sine component is null 

The simplest situation occurs when Slff is a real basis vector. The condition that m,- is real 
requires that, the sine component is zero- this occurs only for certain values of k. Equation 20 
then reduces to 

(21) 

As the sine component is null, the cosine component is necessarily of maximal magnitude and 
so translation to another unit cell results only in some rotation of the moment, and does not 
change its magnitude. This is the situation in many simple ferromagnetic, ferrimagnetic, and 
antiferromagnetic structures (examples are given in Figure la-f).) 

5.1.2 \& is real and the sine component is non-zero 

If the basis vector is real and the sine component is non-zero, Equation 20 leads to a magnetic 
moment that is complex- an impossible situation as the magnetic moment is a real entity. We 
are therefore left with the problem of how to relate our complex basis vector to the projections of 
a real moment. This in fact turns out to be very simple: the moment here cannot be described 
by a single propagation vector, but rather is described by contributions from 2 propagation 
vectors. The second propagation vector that is required in order to describe the magnetic 
moment distribution is the propagation vector -k. 

The atomic vector for an atom in the nth cell related to that in the zeroth cell by translation 
t is then given by:[4] 

(22) 

Where [4], 
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(23) 

Insertion of this relation into Equation 22 and expansion of the exponential leads to 

(24) 

As we are considering real basis vectors, the imaginary component in Equation 24 is zero and 
this reduces to 

(25) 

We therefore see that if the propagation vector k leads a non-zero sine component in Equation 
20, the magnetic structure involves both the wave vectors k and -k. A non-zero sine component 
requires also that the magnitude of the moment changes with translation through the crystal. 
The resulting structure has a sine modulation and an example is shown in Figure lh. 

5.2 Helical structures 

5.2.1 * is complex and Re{*)=Im(#) 

A complex basis vector associated with the vector k requires also a contribution from the -k. 
Therefore, we begin again from Equation 24: 

(26) 

If the real and imaginary components of * are equal we find that this simplifies to: 

(27) 

As the sine and cosine components define the points on a circle, the resulting structure is said 
to be a 'circular helix', i.e. one in which the magnitude of the moment is constant, but its 
orientation changes (Figure li). 

5.2.2 W is complex and Re(*)#Im(*) 

As the real and imaginary components are of different size, the equation 

(28) 

describes an ellipse rather than a circle. The resulting structure is referred to as an 'elliptical 
helix' (Figure lj). 

5.3 Summary of structures and basis vectors 

In this Section we have shown that the class of a magnetic structure is the result of both 
the propagation vector and the form of the basis vectors involved. Sine structures and simple 
structures arise from real basis vectors, while helices involve complex basis vectors. The key 
equations are 

(29) 

and 
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(30) 

The calculation of these basis vectors will be detailed later in the section on Group Theory-
calculations (Section 8). 

6 Location of magnetic reflections 

6.1 k=0 ferromagnetic (ferri- antiferromagnetic) 

As the magnetic and crystallographic unit cells are of the same size, the magnetic reflections 
occur at the nodes of the nuclear reciprocal lattice and their intensities therefore add to those of 
the nuclear reflections. Assuming an unpolarised incident beam, the magnetic cross section[7, 8] 
is then given in barns by: 

(31) 

Where r is a reciprocal space vector as defined by Equation 7 and Mx(Q) is the magnetic inter­
action vector (the component of the magnetic structure factor perpendicular to the scattering 
vector Q, in units of l(r~12 cm): 

(32) 

where FMX(Q) has units of Bohr magnetons. 

6.2 k^O antiferromagnetic- commensurate 

The example shown in Figure 6b is of the propagation vector k=(|00). As the magnetic unit cell 
is 2 times larger in the a direction than the nuclear cell, the reflections will occur at half-integer 
positions (-%kl). 

6.3 k^O antiferromagnetic- incommensurate 

We know that due.to the form of Equation 11, contributions from the basis vectors of both 
k and -k are required. Reflections will therefore be at positions associated with both of these 
propagation vectors, and pairs of Bragg reflections will surround each reciprocal lattice point. 
As demonstrated in Figure 6c, magnetic reflections will be observed at: 

1. For k 

2. For-k 
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a) k=0 
ferromagnetism 
(ferri- or antiferromagnetism 
in non-primitive cell) 

b). k=|00 
antiferromagnetism 
(commensurate propagation vector) 

*c•} K"~K~- K-. K_ 

anUferromagnetism 
(incommensurate propagation vector.) 
Contributions from both 
k and -k are required. 
k => Q= T + k 
-k => Q = t - k 

d) muiti-k:kxkykz + R1(kxkykz) + ... 
antiferromagnetism 
(incommensurate propagation vector.) 

e) k with harmonics 
antiferromagnetism 
(incommensurate propagation vector.) 

Figure 6: Cross-sections and graphs in reciprocal space for a variety of magnetic structure 
classes 
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6.4 Muiti-k 

Figure 6d demonstrates the diffraction pattern of a structure described by two incommensurate 
propagation vectors. We see that there is a pair of reflections for each propagation vector about 
the reciprocal lattice points. This magnetic pattern is exactly the same as that from a structure 
with two equally populated k domains and only the application of a suitable external constraint 
can allow the distinction of these situations. 

6.5 Harmonics of k 

Contributions from the harmonics of k lead to the occurrence of reflections at positions that cor­
respond to fractions of k. The example given in Figure 6 is of an incommensurate propagation 
vector and its harmonic |k . 

7 Symmetry in magnetic structures 

7.1 The little group Gk and its irreducible representations 

As we have already stated, the little group Gk that is made up of all the symmetry elements that 
leave k invariant, is a central concept in the symmetry analysis of magnetic structures. For a 
magnetic structure to be possible, it must be compatible with all of the symmetry operations of 
Gk simultaneously. The set of matrices that describes how the moments transform under all of 
the operations of Gk makes up a 'representation'. It is useful to separate these representations 
into orthogonal Irreducible Representations^)) (IRs), just as we separate the vibrations of a 
molecule into normal modes. 

7.2 Landau Theory and its application to magnetic phase transitions 
and structures 

The power and utility of Group Theory calculations with regards to the determination of 
magnetic structures comes from the Landau theory of a second-order phase transition. In the 
simplest of terms, this states that a second-order transition can involve the build up of magnetic 
fluctuations that have the symmetry of only one Irreducible Representation (in this case an Ir­
reducible Representation describes the symmetry properties of a magnetic moment under all 
the symmetry operations of the little group Gk)[4, 6, 9]. Because of this, the resulting magnetic 
structure can be described by the basis vectors associated with only that Irreducible Repre­
sentation and the basis vectors associated with the Irreducible Representations not involved in 
the transition are necessarily zero. This greatly limits the number of possible magnetic models 
and the number of parameters that are involved in their refinement 

Even in the cases where the transition is not second-order, nature is often kind to us and 
the structures that result are often the same as would be predicted for a second-order transi­
tion.The calculations detailed in Section 8 therefore continue to constitute a useful step in the 
determination, and description, of a magnetic structure. 

7.3 Application to structures with several magnetic sites 

If the unit cell of interest has several magnetic sites we have to consider how they will behave. 
If there are two types of site, A and B, there are 3 limiting cases and we will consider each 
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separately[4]: 

• The two intra-site interactions are dominant: IA> IB > IAB-
Here the coupling between the sites is small and so the sites behave independently. Each 
will therefore have its own ordering transition and no relation between the different Irre­
ducible Representations involved is necessary. 

• The inter-site interactions are dominant: I^B > IA> IB-
The strong coupling between the sites leads to a single critical temperature. The basis 
vectors that are associated with both sites must belong to the same Irreducible Repre­
sentation. This places a great restriction on the number of possible structures. 

• One intra-site interaction is dominant: I A > IAB > IB-
Upon cooling 2 distinct phase transitions will occur. The first involves the moments on the 
A sites. The inter-site coupling will lead to this structure polarising the B moments. These 
will then display the same magnetic structure as the A atoms. At a lower temperature, 
the B moments will undergo a symmetry-breaking transition and order cooperatively. 
The strong coupling between the A and B sites requires that these two orderings involve 
the same Irreducible Representation. 

As an example, let us consider a system where there are 4 possible Irreducible Representa­
tions: 

• Site A: i r \ + 0r2 + i r 3 + i r 4 

• Site B: i i \ + ir2 + or3 + or4 

We know that only non-zero Irreducible Representations (labelled T) can be responsible for a 
magnetic structure. We see immediately that not all the Irreducible Representations occur on 
the two sites, i.e. on site A, T2 is not involved. If site A orders separately, the resulting struc­
ture will correspond to either that of T\, T3 or 1?4, that is to say there are 3 possible magnetic 
'models'. Similarly site B could order according to Fj or 1^. If there is no coupling between the 
sites and each orders separately, there are no symmetry restrictions on the possible Irreducible 
Representations involved. The sites can therefore order according to any of their allowed Ir­
reducible Representations. However, if the situation is such that both order together, the two 
sites must order under the same Irreducible Representation, and only the Irreducible Repre­
sentation I \ can lead to a magnetic structure. The determination of the magnetic structure is 
therefore greatly simplified, as it can only involve the basis vectors associated with r \ . 

8 Representational Analysis 

8.1 Group Theory and magnetic structures 

In non-primitive cells we must also determine the relation between the different magnetic mo­
ments in the cell. This relation can be very difficult to derive and is often found by comparison 
with known magnetic structures, or by trial and error. Group Theory arguments allow us to 
calculate symmetry-allowed relations between the moments and to greatly simplify this pro­
cess. The results of these calculations are precisely the basis vectors, that we have been using 
to describe the magnetic structures. 
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The technique that will be presented in this work involving the application of Group The­
ory to magnetic structures is termed Representational Analysis[10, 1, 11]. The only pieces of 
information that are required for these calculations are the propagation vector k, the crystal-
lographic space group and the atomic coordinates of the magnetic atoms before the magnetic 
phase transition. Rather than simply detailing the calculations involved, their application to 
an example problem will be used. 

Figure 7: The kagome lattice. 

8.2 Computer programs 

A number of computer programs exist that perform the calculations that make up mag­
netic symmetry analysis. Irreducible Representations can be calculated using KAREP[12], 
MODY[13], BASIREPS[14], and SARAA[15]. Basis vectors for the symmetry-allowed magnetic 
structures can be calculated using MODY, BASIREPS, or SARAft. All the Group Theory 
calculations and refinements presented here have been made using the program SARA/i. 

8.3 Example: of AgFe3(S04)2(OH)6 with k = OOf 

The jarosites are described in the space group JR3m (point group D^ ) and their crystal structure 
is displayed in Figure 8. All the calculations that follow will refer to the hexagonal non-
primative setting of this space group, the symmetry elements of which are given in Table 1. As 
the cell is hexagonal there are three kagome layers in the crystal structure and these have the 
stacking sequence ...ABC... The magnetic Fe3+ ions make up a 2-dimensional geometry called 
a kagome lattice (Figure 7). In the mineral argento-jarosite, AgFe3(S04)2(OH)6, the exchange 
is antiferromagnetic and magnetic ordering with a propagation vector k = 00 | (with respect 
to the hexagonal axes) has been found at low temperature. [16, 17, 18] In this section we will 
calculate the symmetry-allowed magnetic structures using Representational Analysis, These 
calculations are also detailed in Ref. [17]. 

8.4 The group Gk and its Irreducible Representations 

As we have already explained in Section 3.4, for a given propagation vector k, some of the 
operators of the space group G0, g — {h\r}, leave it invariant while others transform it into an 
equivalent vector that differs by some arbitrary translation of the reciprocal lattice, r, according 
to: 
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Table 1: Symmetry elements of the space group R3m. The notations used are of the Interna­
tional Tables, where the elements are separated into rotation and translation components, and 
the Jones faithful representations of the rotation parts. The latter corresponds to the vector 
formed from the operation of the rotation part of the element on (x, y, z). 

Element number 

gl 

g2 

g3 

g4 

g5 

g6 

g7 

g8 

g9 

glO 

gll 

g!2 

IT notation 

{1 | 0 0 0} 

{3+ |0 0 0} 

{3~ | 0 0 0} 

{2 | 0 0 0} 

{2 | 0 0 0} 

{ 2 ) 0 0 0 } 

{1 | 0 0 0} 

{3+ | 0 0 0} 

{3 | 0 0 0} 

{m | 0 0 0} 

{m | 0 0 0} 

{m | 0 0 0} 

Jones symbol 

x,y,z 

y,x-y,z 

y — x,x,z 

y,x,z 

x-y,y,z 

-£• j y ~~ & J Z 

S,y,z 

y,y~-x,z 

x — y,x,z 

y,x,z 

y~x,y,z 

x,x-y,z 

Rotation matrix 
/ 1 0 0 \ 

0 1 0 

\ o o l) 
/ 0 I 0 \ 

1 1 0 
\ 0 0 1 / 
/ I 1 0 \ 

1 0 0 
\ 0 0 1 / 
/ 0 1 0 \ 

1 ° -} 
\0 0 1 / 
/ 1 1 0 \ 0 1 0 
\ 0 0 1 / 
/ 1 0 0 \ 

1 1 0 
\0 0 l) 
(I 0 0 \ 

0 1 0 
V o o i / 
/ 0 1 ON 

1 1 0 
\ 0 0 1 / 
/ 1 I 0 \ 

1 0 0 
V o o i / 
/ 0 1 0 \ 

l o o 
V o o i ) 
(I 1 0 \ 

0 1 0 
\ 0 0 1 / 
/ 1 0 0 \ 
[ 1 I 0 1 
\ 0 0 1 ) 
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Figure 8: The jarosite crystal structure in the space group J?3m . 

(33) 

This set of elements makes up the so-called little group, Gk, which is a subgroup of Go- The 
Irreducible Representations of this little group are given by the symbol r„, where v is the label 
of the irreducible representation, and the matrix that corresponds to the symmetry element g 
is labelled by d$(g) 

Table 2: First-order Irreducible Representations for the group D\d for the vector k= OOf. 

Ti 

r2 
r3 
r4 

gi 
I 
i 
i 
i 

g2 
1 
1 
1 
1 

g3 
1 
1 
1 
1 

g4 
1 
1 
-1 
-1 

g5 
1 
1 
-1 
-1 

g6 
1 
1 
-1 
-1 

g7 
1 
-1 
1 
-1 

g8 
1 
-1 
1 
-1 

D-9 

o^7 1 
-1 
1 
-1 

glO 
1 
-1 
-1 
1 

gll 
1 
-1 
-1 
1 

gl2 
1 

-i 
-i 
i 

Looking at the example of AgFe3(S04)2(OH)6 with k = 00|, we find that the little group 
contains all of the 12 symmetry operators of the space group R3m. The Irreducible Repre­
sentations of these are given in Tables 2 and 3. One sees immediately that the second-order 
representations T5 and Fg have the same elements for symmetry operations 1-6 and are related 
by a factor of (-1) for the operations 7-12. 

These Irreducible Representations may be verified against tabulated values of the projec­
tive (or 'loaded') representations, dPJ, given in works such as Bradley and Cracknell[9] and 
Kovalev[19]. The tabulated representations are given for the various point group symmetries 
and can be converted into the Irreducible Representations of the little group Gk of the propa­
gation vector k by multiplicating them with a phase factor: 

(34) 
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Table 3: Second-order Irreducible Representations for the group Df̂  for the vector k= 00§. 

r5,r6 

rs 

r6 

g i 
1 0 
0 1 

g7 
- 1 0 

0 - 1 
1 0 
0 1 

g2 
e 0 
0 e2 

g8 
- € 0 

0 - « 2 

€ 0 
0 e2 

g3 
e2 0 
0 £ 

g9 
- e 2 0 

0 -e 
e2 0 
0 e 

g 4 

0 1 
1 0 

gio 
0 - 1 

- 1 0 
0 1 
1 0 

g5 
0 e2 

e 0 

g l l 
0 - € 2 

- e 0 
0 £2 

£ 0 

g6 
0 e 

e2 0 

gl2 
0 - € 

„ € 2 Q 

0 £ 
e2 0 

Where r represents the translation part of the symmetry operator to which d„ is associated. 

8.5 Effect of symmetry element on a moment bearing atom 

The effect of a symmetry element is two-fold: it will act to change the position of an atom, and 
reorientate the magnetic moment, e.g. atom 1 moves to the position of atom 2, and its moment 
is reversed. The combination of these two results are described by the magnetic representation, 
F. We will examine these two effects separately: 

8.5.1 Effect of symmetry element on atom positions: the permutation represen­
tation 

A symmetry operator g = {h\r} acts on both the position Tj of the atom and on the components 
a of the axial vector that describes the moment. The operation that sends tj in the zeroth cell 
to fj in the pth cell can be symbolically stated as 

(35) 

In other terms, the effect of a symmetry operation g is to permute the column matrix of 
atom labels, P: 

(36) 

This operation is governed by a permutation representation, Tperm, which has matrices of order 
NA, where NA is the number of equivalent positions of the crystallographic site. It is important 
to note that when a symmetry operation results in an atomic position that is outside the zeroth 
cell, a phase factor must be included that relates the generated position to that in the zeroth 
cell. This phase is simply given by: 

(37) 

Where T is the translation vector, that relates the original and generated atoms. 
As an example, from Table 4 we see that the permutation equation for the atoms of the 

three Bravais sublattices under the g={3+ | 0 0 0} operation is: 

(38) 
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Where the atomic positions follow the labelling: 1=( | § | ) , 2 = ( | 0 | ) , 3={0 § | ) . 
For the operation g={3+ | 0 0 0}, 0a = 9h = 9C = 0 for k= 00|. 

The permutation representation is therefore given by 

(39) 

The character of this representation, Xperm, f°r e a c n symmetry operator is then simply the 
sum of the phases 6(g) for the atoms that are transformed into an equivalent atom under a 
symmetry operation, and so for both the propagation vectors, Xpltm00^= 0-

8.5.2 Effect of symmetry element on moment vectors: the axial vector represen­
tation 

The second effect of this symmetry operation is to transform the spin components with index 
a, (a = x,y,z) of the reference spin j into the index a' of the atom at ^.[10, 1, 11] These 
transformations are described by the axial vector representation, V, the character of which is 
given by 

(40) 
a—Q 

Where R%b refers to a specific element a, b of the rotation matrix h, and det(h) represents the 
determinant of the rotation matrix i?ft,and has the value of +1 for a proper and -1 for an 
improper rotation. This is exemplified for the 3+ rotation, where the operation of h(3+) on the 
moment vector M=(mx ms mz) gives: 

(41) 

(42) 

As 3 + is a proper rotation, det(3+) = 1 and the character of V for h(3+) is therefore.x|-+=0. 

8.6 Magnetic representation 

As we have already stated, the magnetic representation, T, describes both the result of the 
symmetry operation on the atomic positions, and on the axial vectors that describe the magnetic 
moments. As these effects are independent, the magnetic representation is given by their direct 
product[10, 11, 1]: 

(43) 

Or, in terms of the matrices for the representations themselves 

(44) 
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Table 4: The permutation of B3 + atoms (at position 9d) and the transformation of the axial 
components of the moment under the different symmetry operators of the i?3m space group 
(point group £>fj for k = 00§. The characters of the representations Yperm and V are given. 

9 = 
{1 
{3+ 
{ 3 -

{2 
{2 
{2 
{1 
{3+ 

{3 
{m 
{m 
{m 

{h\T} 
| 0 0 0 } 
1 0 0 0 } 
| 0 0 0} 
| 0 0 0} 
| 0 0 0 } 

j o o o } 
j 00 0} 
j o o o } 
j o o o } 
| 0 0 0} 
jooo} 
j o o o } 

Atoms 
1 
1 
2 
3 
-1 
-3 
-2 
-1 
-2 
-3 
1 
3 
2 

2 
2 
3 
1 

-3 
-2 
-1 
-2 
-3 
-1 
3 
2 
1 

3 
3 
1 
2 
-2 
-1 
-3 
-3 
-1 
-2 
2 
1 
3 

Xperm 

3 
0 
0 
-1 
-1 
-1 
-3 
0 
0 
1 
1 
1 

Axial vector components 
mx 

mx 

-my 

- 1 ^ + 1 % 
my 

mx-my 

-mx 

mx 

~my 

-mj+m 9 

mv 

nij-nij , 

-mx 

my 

my 

m r % 
-mx 

n i j 

-my 

- m x + m , 
i % 

mx-mv 

-mx 

m , 
-rrij, 

-m2+mj, 

mz 

mz 

mz 

mz 

-mz 

-mz 

-mz 

m2 

mz 

m2 

-mz 

-mz 

-m» 

Xv 
3 
0 
0 

-1 
-1 
-1 
-3 
0 
0 

-1 
-1 
-1 

The characters of these representations are related according to: 

(45) 

8.7 Reduction of the Representation V 

The magnetic representation for a particular site can be decomposed into contributions from 
the Irreducible Representations of the little group: 

(46) 

where nv is the number of times the irreducible representation r„ appears in the magnetic 
representation F. nv is given by: 

(47) 

Here, xr is the character of the magnetic space group and xrj is the complex conjugate of the 
character of the irreducible representation with index v. 

8.8 Calculation of the basis vectors ^ 

The basis vectors, tf>n, that transform according to the fi dimensional irreducible representation 
T ^ are projected out of the representation matrix D^ using a series of test functions <pP, where 
<pl = (100), <f>2 = (010), and 4>3 — (001). This is carried out by the projection operator formula: 

(48) 

The summation is over the symmetry elements of the little group Gk- ^ is a spin component 
that we represent by a column matrix i^(r). S^gi is unity if the atoms i and gi are equivalent 
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positions of the crystallographic site that are related by a primitive lattice translation, i.e. 
they are of the same sublattice of the Wyckoff site. Equation 48 is applied sequentially to each 
element A of the matrix D„, for each equivalent position i of the crystallographic site. The row 
of the matrices D„ is fixed during the examination of a given IR. 

In our calculations the JJ, elements are those that correspond to the first row of the matrix of 
D„. As for each element, labelled A = l...p, three components fi are projected out, there are in 
total 3/J. projected components. Of these, the number of non-zero unique projected components 
for a representation is of course the same as calculated using Equation (47). 

8.9 Refinement of basis vectors mixing coefficients 

Any linear combination of basis vectors within one representation is necessarily a symmetry-
allowed basis vector. The atomic moment on a particular atom,m_j, is therefore most generally 
given by the sum of the basis vectors for a particular irreducible representation: 

(49) 

where C„ is the mixing coefficient of the basis vector v. In refining the orientation of an atomic 
moment, we are in effect refining the mixing coefficients Cv of the basis vectors within the 
irreducible representation being examined. The number of variables in our refinement is simply 
the number of unique basis vectors that transform according to a given representation, i.e. nv\i. 

8.10 Refinement of complex basis vectors 

The refinement of the mixing coefficients that relate complex basis vectors will be dealt with in 
detail, to demonstrate how an ordered array of magnetic moments, which are necessarily real 
entities, can be described by complex basis vectors. 

8.11 Decomposition of the magnetic representation and the basis 
vectors of AgFe3(S04)2(OH)6 

In the hexagonal setting the magnetic Fe3+ ions are found on the 9d sites. For these sites the 
decomposition of the magnetic representation according to Equation 47 is: 

(50) 

The Landau theory of a second-order phase transition, requires that only one representation 
is involved, and so for this k there are only three possible magnetic structures. These correspond 
to representations T2, F4 and Fj. 

The basis vectors for these representations calculated according to Equation 48 are given in 
Table 5. The atomic sites are labelled following the convention given in Section 8.5.1. The basis 
vectors have varied forms and we will now explain in detail the types of magnetic structures 
that they correspond to. 

Representations F2 and F4 are one dimensional. They therefore correspond to simple mag­
netic structures in which the atomic moments are orientated along particular crystallographic 
axes. It is noteworthy that both i/>i and ip2 correspond to 120° spin structures, with the total 
spin on any given triangle plaquette being HiSi=0. While, the two spin structures are in fact 
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Table 5: The basis vectors of the Irreducible Group Representations of the space group R3m 
(point group £>|d) appearing in the magnetic representation with k = 00 | 

IR 

r2 

r4 
r5 

b-v 

ipi 
ih 
^ 3 

i>4 

^ 5 

i>9 

mx 

i 
0 
1 

1 

0 

0 

0 

1 

0 

Atom ". 

m„ 
-1 
0 
1 

0 

1 

0 

1 

0 

0 

m* 
0 
1 
0 

0 

0 

1 

0 

0 

-1 

n i j 

1 
0 
-1 

0 
1 + i^ i 
2 ^ 2 i 

0 
2 2 * 

0 

0 

Atom 2 
m9 

2 
0 
0 

_ 1 -3&[ 
2 2 

2 ^ 2 1 

0 
1 i/3s 
2 2J 

0 

m2 

0 
1 
0 

0 

0 
- I - *§i 

2 2 
0 
0 

2 2 * 

m s 

-2 
0 
0 

1 V3-
2 2 l 

2 ^ 2 * 

0 

2 2 * 

0 

Atom 3 
r% 
-1 
0 
-1 

1 >/3: 
2 2 * 

0 

0 

0 
l + y^i 

0 

mz 

0 
1 
0 

0 

0 

2 T 2 * 

0 

0 

5 + -J-1 

related by a global rotation of spins, the two representations differ in that I~2 allows the in­
troduction of an out-of-plane component, which corresponds to ^2- The combination of the 2 
basis functions tpx and if>z creates a so-called 'umbrella structure' (of the type shown in Figure 
If) in which the degree of out-of-plane canting is a refinement variable. 

Representation T5 is two dimensional and is repeated 3 times. It therefore corresponds to 
a 6 basis vector magnetic structure. As the general solution involves any linear combination 
of these 6 basis vectors we can not ascribe to this representation a simple structure. We do 
note however, that there are relations between the basis vectors and these will simplify the 
refinement of the mixing coefficients: ^ J = ^ 8 , $%=*!>y and ^J=-^>9. 

As the atomic spins are real entities, in the case of complex basis vectors it is necessary to 
introduce the corresponding basis vectors of the propagation vector -k in order to make the 
summation of the two components real (Section 5). A description of the translation properties 
of this structures begins as normal from: 

(51) 

However, as for k = 00 § the vectors k and -k are equivalent, we have - k = k — 3c* and so 

(52) 

and 

(53) 

A further simplification arises from the fact that the addition of the -k contribution corre­
sponds to the addition of the conjugate of the basis vector of k, i.e. 

(54) 

We therefore obtain 

(55) 
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For both k = 00 | the sine component vanishes under the centring translations of the non-
primitive cell, or integer translations of the crystallographic cell, and so Equation 55 reduces 
to 

(56) 

As in general, the basis vectors associated with Ts that are to be tested against the magnetic 
structure are complex, when considering the translational properties of the magnetic moments 
it is sufficient just to add their complex conjugate in order to arrive at real values for the atomic 
moments. In these two cases this leads to Equation 56. 

An alternative way of dealing with complex basis vectors is to examine the properties of 
the basis vectors associated with an irreducible representation. In some cases2 by mixing the 
different basis vectors in particular ways, with perhaps the addition to all the basis vectors of a 
phase factor, real basis vectors can be defined. This technique corresponds to the transformation 
of the complex basis vector space into an equivalent real basis. 

Figure 9: x2 as a function of the basis vector coefficients C(ipi) and C(tl}2) during the refinement 
of the magnetic structure of AgFe3 (804)2 (OD)6 at 1.5K. 

8.12 Refinement of the magnetic structure of 
AgFe3(S04)2(OD)6 

The collected neutron diffraction data were found to be compatible only with a magnetic struc­
ture described by the representation IV Figure 9 displays the value of x2 as a function of the 
mixing coefficients C ^ ) and C(if>2); the only refinement variable in the least-squares matrix 
was the magnitude of the magnetic moment. In all cases the sum of the mixing coefficients 
was adjusted to be unity, and a trivial factor was then used to separately scale the magnitudes 
of moments described. The best value of x2 corresponds to the coefficients C(t/>1)=0.99 (5) 
and C(t/>2)=0-01 (5)> that is to say the refined structure is coplanar and the contribution from 
out-of-plane canting is zero within the error of these data. The final refined profile is presented 
in Figure 10 and the final magnetic structure in Figure 11. 

2this criteria for this transformation is that the Coirreducible Representation (OR) derived from the irre­
ducible representation is real 
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Figure 10: Experimental and calculated diffraction patterns for AgFe3(S04)2(OD)6 at 1.5K. 
Magnetic and crystallographic reflections are indicated by the upper and lower tick marks 
respectively. 

Figure 11: Magnetic structure of AgFe3(S04)2(OD)6 . 
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8.13 Discussion of the magnetic structure of 
AgFe3(S04)2(OD)6 

The magnetic structure that is refined is a triangular structure, that is to say the neighbouring 
moments are related by 120°. This is what we would naively expect for a triangular array of 
antiferromagnetically coupled spins. The Group Theory arguments we have used indicate that 
only particular orientations are possible for this configuration. As we will show in the practicals 
that accompany this course, the out-of-plane component that is only allowed in Fa is important 
at higher temperatures arid leads to the formation of an umbrella structure. 

9 Summary of course 

As stated in the introduction, this course was intended to explain how to describe a magnetic 
structure in terms of a propagation vector and some of its associated basis vectors. The exam­
ples given show how the different possible types of magnetic structure lead directly from this 
description. The second part of this text has been devoted to magnetic symmetry analysis-
Representational Analysis. The Group Theory calculations that this involves are tedious, but 
now computer programs exist that perform these calculations in seconds. The basis vectors 
that result simplify greatly the processes of finding a magnetic structure, and can facilitate 
their correct description. 

10 Further reading 

Much inspiration, of varying levels, has been taken from a number of works on magnetic struc­
tures and magnetic symmetry analysis. For a first step into these subjects the References 
[1, 4, 5, 6, 7] are particular suitable. Reference [7] presents a clear introduction into the tech­
nical aspects of magnetic neutron scattering. 
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